Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor

The extended Kalman filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the states or parameters of discrete-time nonlinear dynamical systems. In this paper, we consider the dual-estimation problem, the so-called dual EKF, in which both the states of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2011-11, Vol.35 (11), p.2426-2436
Hauptverfasser: Khodadadi, Hossein, Jazayeri-Rad, Hooshang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2436
container_issue 11
container_start_page 2426
container_title Computers & chemical engineering
container_volume 35
creator Khodadadi, Hossein
Jazayeri-Rad, Hooshang
description The extended Kalman filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the states or parameters of discrete-time nonlinear dynamical systems. In this paper, we consider the dual-estimation problem, the so-called dual EKF, in which both the states of a dynamical system and its parameters are estimated simultaneously, given only noisy observations. The main contribution of this paper is to show the efficacy of a proposed simplified dual-EKF technique (which in this work will be referred to as the dual EKF-2) in comparison with the conventional joint EKF. This has been demonstrated by conducting simulation studies on a CSTR which has been dynamically simulated using the HYSYS simulation package. Extensive analysis revealed that, not only the dual-EKF approach can achieve optimal state- and parameter-estimation performances comparable to the joint EKF, but also it has the main advantage of carrying out separate estimations of the states and parameters.
doi_str_mv 10.1016/j.compchemeng.2010.12.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926299133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135410003716</els_id><sourcerecordid>926299133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a587b68b3f71d87ec9b0a85b54aadca16c10f221a89ac8546cf44f7038eccb953</originalsourceid><addsrcrecordid>eNqNkE9v1DAQxS1EJZa238EcEKcsdpw_zrFaQUFU4gJnazIZt14SO9heRA_97jjaCnHk9KTRb968eYy9kWIvhezeH_cYlhUfaCF_v6_FNq_3RV6wndS9qhrVty_ZTohBV1K1zSv2OqWjEKJutN6xp5t1nR-dv-fApxPMnH5n8hNN_AvMC3hu3Zwpchsizw_EffCz8wSRpwyZOPiJrxBhoY2ilN0C2QWfeLDFEoPPzp_CKRXexVh8M_gfPBJgDvGKXViYE10_6yX7_vHDt8On6u7r7efDzV2FSqtcQav7sdOjsr2cdE84jAJ0O7YNwIQgO5TC1rUEPQDqtunQNo3thdKEOA6tumTvzr5rDD9PJaVZXEKaZ_BUspmh7uphkEoVcjiTGENKkaxZY3kpPhopzNa4OZp_Gjdb40bWpkjZfft8BRLCbCN4dOmvQd2qodVqS3M4c1Re_uUomoSOPNLkImE2U3D_ce0PJYyf_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926299133</pqid></control><display><type>article</type><title>Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Khodadadi, Hossein ; Jazayeri-Rad, Hooshang</creator><creatorcontrib>Khodadadi, Hossein ; Jazayeri-Rad, Hooshang</creatorcontrib><description>The extended Kalman filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the states or parameters of discrete-time nonlinear dynamical systems. In this paper, we consider the dual-estimation problem, the so-called dual EKF, in which both the states of a dynamical system and its parameters are estimated simultaneously, given only noisy observations. The main contribution of this paper is to show the efficacy of a proposed simplified dual-EKF technique (which in this work will be referred to as the dual EKF-2) in comparison with the conventional joint EKF. This has been demonstrated by conducting simulation studies on a CSTR which has been dynamically simulated using the HYSYS simulation package. Extensive analysis revealed that, not only the dual-EKF approach can achieve optimal state- and parameter-estimation performances comparable to the joint EKF, but also it has the main advantage of carrying out separate estimations of the states and parameters.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2010.12.010</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Approximation ; Chemical engineering ; Computer science; control theory; systems ; Computer simulation ; Control theory. Systems ; CSTR ; Dual EKF ; Dual estimation ; Dynamical systems ; Effectiveness ; Exact sciences and technology ; Extended Kalman filter ; Joint EKF ; Metrology, automation ; Modelling and identification ; Nonlinearity ; Optimal control ; Reactors ; State and parameter constraints ; Tanks</subject><ispartof>Computers &amp; chemical engineering, 2011-11, Vol.35 (11), p.2426-2436</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a587b68b3f71d87ec9b0a85b54aadca16c10f221a89ac8546cf44f7038eccb953</citedby><cites>FETCH-LOGICAL-c383t-a587b68b3f71d87ec9b0a85b54aadca16c10f221a89ac8546cf44f7038eccb953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135410003716$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25395835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodadadi, Hossein</creatorcontrib><creatorcontrib>Jazayeri-Rad, Hooshang</creatorcontrib><title>Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor</title><title>Computers &amp; chemical engineering</title><description>The extended Kalman filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the states or parameters of discrete-time nonlinear dynamical systems. In this paper, we consider the dual-estimation problem, the so-called dual EKF, in which both the states of a dynamical system and its parameters are estimated simultaneously, given only noisy observations. The main contribution of this paper is to show the efficacy of a proposed simplified dual-EKF technique (which in this work will be referred to as the dual EKF-2) in comparison with the conventional joint EKF. This has been demonstrated by conducting simulation studies on a CSTR which has been dynamically simulated using the HYSYS simulation package. Extensive analysis revealed that, not only the dual-EKF approach can achieve optimal state- and parameter-estimation performances comparable to the joint EKF, but also it has the main advantage of carrying out separate estimations of the states and parameters.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Chemical engineering</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control theory. Systems</subject><subject>CSTR</subject><subject>Dual EKF</subject><subject>Dual estimation</subject><subject>Dynamical systems</subject><subject>Effectiveness</subject><subject>Exact sciences and technology</subject><subject>Extended Kalman filter</subject><subject>Joint EKF</subject><subject>Metrology, automation</subject><subject>Modelling and identification</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>Reactors</subject><subject>State and parameter constraints</subject><subject>Tanks</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE9v1DAQxS1EJZa238EcEKcsdpw_zrFaQUFU4gJnazIZt14SO9heRA_97jjaCnHk9KTRb968eYy9kWIvhezeH_cYlhUfaCF_v6_FNq_3RV6wndS9qhrVty_ZTohBV1K1zSv2OqWjEKJutN6xp5t1nR-dv-fApxPMnH5n8hNN_AvMC3hu3Zwpchsizw_EffCz8wSRpwyZOPiJrxBhoY2ilN0C2QWfeLDFEoPPzp_CKRXexVh8M_gfPBJgDvGKXViYE10_6yX7_vHDt8On6u7r7efDzV2FSqtcQav7sdOjsr2cdE84jAJ0O7YNwIQgO5TC1rUEPQDqtunQNo3thdKEOA6tumTvzr5rDD9PJaVZXEKaZ_BUspmh7uphkEoVcjiTGENKkaxZY3kpPhopzNa4OZp_Gjdb40bWpkjZfft8BRLCbCN4dOmvQd2qodVqS3M4c1Re_uUomoSOPNLkImE2U3D_ce0PJYyf_A</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Khodadadi, Hossein</creator><creator>Jazayeri-Rad, Hooshang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111115</creationdate><title>Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor</title><author>Khodadadi, Hossein ; Jazayeri-Rad, Hooshang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a587b68b3f71d87ec9b0a85b54aadca16c10f221a89ac8546cf44f7038eccb953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Chemical engineering</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control theory. Systems</topic><topic>CSTR</topic><topic>Dual EKF</topic><topic>Dual estimation</topic><topic>Dynamical systems</topic><topic>Effectiveness</topic><topic>Exact sciences and technology</topic><topic>Extended Kalman filter</topic><topic>Joint EKF</topic><topic>Metrology, automation</topic><topic>Modelling and identification</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>Reactors</topic><topic>State and parameter constraints</topic><topic>Tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodadadi, Hossein</creatorcontrib><creatorcontrib>Jazayeri-Rad, Hooshang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodadadi, Hossein</au><au>Jazayeri-Rad, Hooshang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2011-11-15</date><risdate>2011</risdate><volume>35</volume><issue>11</issue><spage>2426</spage><epage>2436</epage><pages>2426-2436</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>The extended Kalman filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the states or parameters of discrete-time nonlinear dynamical systems. In this paper, we consider the dual-estimation problem, the so-called dual EKF, in which both the states of a dynamical system and its parameters are estimated simultaneously, given only noisy observations. The main contribution of this paper is to show the efficacy of a proposed simplified dual-EKF technique (which in this work will be referred to as the dual EKF-2) in comparison with the conventional joint EKF. This has been demonstrated by conducting simulation studies on a CSTR which has been dynamically simulated using the HYSYS simulation package. Extensive analysis revealed that, not only the dual-EKF approach can achieve optimal state- and parameter-estimation performances comparable to the joint EKF, but also it has the main advantage of carrying out separate estimations of the states and parameters.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2010.12.010</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2011-11, Vol.35 (11), p.2426-2436
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_926299133
source Elsevier ScienceDirect Journals
subjects Applied sciences
Approximation
Chemical engineering
Computer science
control theory
systems
Computer simulation
Control theory. Systems
CSTR
Dual EKF
Dual estimation
Dynamical systems
Effectiveness
Exact sciences and technology
Extended Kalman filter
Joint EKF
Metrology, automation
Modelling and identification
Nonlinearity
Optimal control
Reactors
State and parameter constraints
Tanks
title Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20a%20dual%20extended%20Kalman%20filter%20for%20the%20nonlinear%20state%20and%20parameter%20estimations%20of%20a%20continuous%20stirred%20tank%20reactor&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Khodadadi,%20Hossein&rft.date=2011-11-15&rft.volume=35&rft.issue=11&rft.spage=2426&rft.epage=2436&rft.pages=2426-2436&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/j.compchemeng.2010.12.010&rft_dat=%3Cproquest_cross%3E926299133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926299133&rft_id=info:pmid/&rft_els_id=S0098135410003716&rfr_iscdi=true