Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor
The extended Kalman filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the states or parameters of discrete-time nonlinear dynamical systems. In this paper, we consider the dual-estimation problem, the so-called dual EKF, in which both the states of...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2011-11, Vol.35 (11), p.2426-2436 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extended Kalman filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the states or parameters of discrete-time nonlinear dynamical systems. In this paper, we consider the dual-estimation problem, the so-called dual EKF, in which both the states of a dynamical system and its parameters are estimated simultaneously, given only noisy observations. The main contribution of this paper is to show the efficacy of a proposed simplified dual-EKF technique (which in this work will be referred to as the dual EKF-2) in comparison with the conventional joint EKF. This has been demonstrated by conducting simulation studies on a CSTR which has been dynamically simulated using the HYSYS simulation package. Extensive analysis revealed that, not only the dual-EKF approach can achieve optimal state- and parameter-estimation performances comparable to the joint EKF, but also it has the main advantage of carrying out separate estimations of the states and parameters. |
---|---|
ISSN: | 0098-1354 1873-4375 |
DOI: | 10.1016/j.compchemeng.2010.12.010 |