Matrix Wiener transform
In this paper we analyse some properties of the matricial expression of the Fourier–Wiener transform, a matrix transform firstly treated by Cameron and Martin for analytic functions [3,4]. Here the referred properties are a composition formula, a Parseval relation and an inversion formula, which, ac...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-10, Vol.218 (3), p.773-776 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we analyse some properties of the matricial expression of the Fourier–Wiener transform, a matrix transform firstly treated by Cameron and Martin for analytic functions
[3,4]. Here the referred properties are a composition formula, a Parseval relation and an inversion formula, which, according to Segal (1956)
[13] extends an unitary explicit integral representation of the second quantization for one integral operator of the Wiener transform
[12]. This work includes the unitary extension of the transform to
L
2
(
R
n
,
d
μ
c
)
, where
f belongs to the class of complex valued polynomials on
R
n
, and
dμ
c
being the Gaussian measure on
R
n
as a unitary map
[5]. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2011.01.084 |