Matrix Wiener transform

In this paper we analyse some properties of the matricial expression of the Fourier–Wiener transform, a matrix transform firstly treated by Cameron and Martin for analytic functions [3,4]. Here the referred properties are a composition formula, a Parseval relation and an inversion formula, which, ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-10, Vol.218 (3), p.773-776
Hauptverfasser: Hayek, N., González, B.J., Negrin, E.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we analyse some properties of the matricial expression of the Fourier–Wiener transform, a matrix transform firstly treated by Cameron and Martin for analytic functions [3,4]. Here the referred properties are a composition formula, a Parseval relation and an inversion formula, which, according to Segal (1956) [13] extends an unitary explicit integral representation of the second quantization for one integral operator of the Wiener transform [12]. This work includes the unitary extension of the transform to L 2 ( R n , d μ c ) , where f belongs to the class of complex valued polynomials on R n , and dμ c being the Gaussian measure on R n as a unitary map [5].
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.01.084