Interfacial reactions between Sn-3.5 Ag solder and Ni–W alloy films

Nickel based alloys are currently being investigated in an effort to develop stable barrier films between lead free solder and copper substrate. In this study, interfacial reactions between Ni–W alloy films and Sn-3.5 Ag solder have been investigated. Ni–W alloys films with tungsten content in the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2011-09, Vol.22 (9), p.1372-1377
Hauptverfasser: Haseeb, A. S. M. A., Chew, C. S., Johan, Mohd Rafie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nickel based alloys are currently being investigated in an effort to develop stable barrier films between lead free solder and copper substrate. In this study, interfacial reactions between Ni–W alloy films and Sn-3.5 Ag solder have been investigated. Ni–W alloys films with tungsten content in the range of 5.0–18.0 at.% were prepared on copper substrate by electrodeposition in ammonia citrate bath. Solder joints were prepared on the Ni–W coated substrate at a reflow temperature of 250 °C. The solder joint interface was investigated by Cross-sectional scanning electron microscopy, energy dispersive X-ray spectroscopy and electron back scatter diffraction. It has been observed that a Ni 3 Sn 4 layer with faceted morphology formed on the Ni–W alloy film after reflow. The thickness of the bright layer was found to decrease with the increase of tungsten content in the Ni–W film. An additional layer with a bright appearance was also found to form below the Ni 3 Sn 4 layer. The bright layer was identified to be a ternary phase containing Sn, W and Ni. The bright layer is found to be amorphous and is suggested to have formed through solid state amorphization caused by anomalously fast diffusion of Sn into Ni–W film.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-011-0316-y