Design of a Multidisc Electromechanical Brake

This paper presents the design of an electrically actuated, proportional brake that provides a significantly greater torque-to-weight ratio than a magnetic particle brake (MPB) (considered a benchmark of the state of the art) without sacrificing other characteristics, such as dynamic range, bandwidt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2011-12, Vol.16 (6), p.985-993
Hauptverfasser: Farris, R. J., Goldfarb, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the design of an electrically actuated, proportional brake that provides a significantly greater torque-to-weight ratio than a magnetic particle brake (MPB) (considered a benchmark of the state of the art) without sacrificing other characteristics, such as dynamic range, bandwidth, or electrical power consumption. The multidisc brake provides resistive torque through a stack of friction discs, which are compressed by a dc-motor-driven ball screw. Unlike nearly all other proportional brakes, which operate in a normally unlocked mode, the brake presented here is designed such that it may be configured in either a normally unlocked or normally locked mode. The latter enables lower electrical energy consumption and added safety in the event of electrical power failure in certain applications. Following the device description, experimental data are presented to characterize the performance of the brake. The performance characteristics are subsequently compared to those of a commercially available MPB of comparable size.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2010.2064332