Advanced strain engineering for state-of-the-art nanoscale CMOS technology

The introduction and advancement of strain engineering has been one of the most critical features for the state-of-the-art nanoscale CMOS transistors. This paper provides an overview of the major strain engineering techniques that have remarkably re-shaped the advanced CMOS transistor architecture,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2011-05, Vol.54 (5), p.946-958
Hauptverfasser: Yang, Bin (Frank), Cai, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The introduction and advancement of strain engineering has been one of the most critical features for the state-of-the-art nanoscale CMOS transistors. This paper provides an overview of the major strain engineering techniques that have remarkably re-shaped the advanced CMOS transistor architecture, including embedded SiGe (eSiGe), embedded Si:C (eSi:C), stress memorization technique (SMT), dual stress liners (DSL), and stress proximity technique (SPT). The advent of high-K/metal-gate (HKMG) also brings in additional strain benefit with its metal gate stressor (MGS) and replacement gate (RMG) process. Strain engineering continues to evolve and will remain to be one of the key performance enablers for the future generation of CMOS technologies.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-011-4224-9