Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method

During last three decades, successive ionic layer adsorption and reaction (SILAR) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of materials science 2004-04, Vol.27 (2), p.85-111
Hauptverfasser: Pathan, H M, Lokhande, C D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During last three decades, successive ionic layer adsorption and reaction (SILAR) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, semiconductors, metals and temperature sensitive substrates (like polyester) can be used since the deposition is carried out at or near to room temperature. As a low temperature process, it also avoids oxidation and corrosion of the substrate. The prime requisite for obtaining good quality thin film is the optimization of preparative provisos viz. concentration of the precursors, nature of complexing agent, pH of the precursor solutions and adsorption, reaction and rinsing time durations etc. In the present review article, we have described in detail, successive ionic layer adsorption and reaction (SILAR) method of metal chalcogenide thin films. An extensive survey of thin film materials prepared during past years is made to demonstrate the versatility of SILAR method. Their preparative parameters and structural, optical, electrical properties etc are described. Theoretical background necessary for the SILAR method is also discussed.
ISSN:0250-4707
0973-7669
DOI:10.1007/BF02708491