Possible Involvement of Transient Receptor Potential Channels in Electrophile-Induced Insulin Secretion from RINm5F Cells

Endogenously produced reactive oxygen species reportedly stimulate insulin secretion from islet β-cells. However, the molecular machinery that governs the oxidant-induced insulin secretion has yet to be determined. The present study demonstrates, using rat islet β-cell-derived RINm5F cells, the invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 2012/03/01, Vol.35(3), pp.346-354
Hauptverfasser: Numazawa, Satoshi, Takase, Makiko, Ahiko, Tomomi, Ishii, Masakazu, Shimizu, Shun-ichi, Yoshida, Takemi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endogenously produced reactive oxygen species reportedly stimulate insulin secretion from islet β-cells. However, the molecular machinery that governs the oxidant-induced insulin secretion has yet to be determined. The present study demonstrates, using rat islet β-cell-derived RINm5F cells, the involvement of the transient receptor potential (TRP) cation channels in the insulin secretion induced by the lipid peroxidation product 4-hydroxy-2-nonenal. Short-term (1 h) exposure of 4-hydroxy-2-nonenal induced a transient increase in intracellular Ca2+ concentration and subsequent insulin secretion in a concentration-dependent manner. The increase in intracellular Ca2+ concentration seemed to be due to an influx through the L-type voltage-dependent Ca2+ channel, since it was not observed when extracellular Ca2+ was absent and was inhibited almost completely by diltiazem or nifedipine. Ruthenium red, a non-specific inhibitor of TRP channels, inhibited the Ca2+ influx and insulin secretion evoked by 4-hydroxy-2-nonenal. Among the TRP channels, TRPA1 was found to be predominantly expressed, not only in RINm5F cells, but also rat islets. TRPA1 agonists, allylisothiocyanate and 15-deoxy-Δ12,14-prostaglandin J2, significantly induced Ca2+ influx, and a specific inhibitor TRPA1, HC-030031, blocked the effects elicited by 4-hydroxy-2-nonenal. These results suggest that 4-hydroxy-2-nonenal induces Ca2+ influx via the activation of TRP channels, including TRPA1, which appears to be coupled with the L-type voltage-dependent Ca2+ channel, and ultimately insulin secretion in RINm5F cells.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.35.346