On the utility of predictive chromatography to complement mass spectrometry based intact protein identification

The amino acid sequence determines the individual protein three-dimensional structure and its functioning in an organism. Therefore, “reading” a protein sequence and determining its changes due to mutations or post-translational modifications is one of the objectives of proteomic experiments. The co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2012-03, Vol.402 (8), p.2521-2529
Hauptverfasser: Pridatchenko, Marina L., Perlova, Tatyana Yu, Ben Hamidane, Hisham, Goloborodko, Anton A., Tarasova, Irina A., Gorshkov, Alexander V., Evreinov, Victor V., Tsybin, Yury O., Gorshkov, Mikhail V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The amino acid sequence determines the individual protein three-dimensional structure and its functioning in an organism. Therefore, “reading” a protein sequence and determining its changes due to mutations or post-translational modifications is one of the objectives of proteomic experiments. The commonly utilized approach is gradient high-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry. While serving as a way to simplify the protein mixture, the liquid chromatography may be an additional analytical tool providing complementary information about the protein structure. Previous attempts to develop “predictive” HPLC for large biomacromolecules were limited by empirically derived equations based purely on the adsorption mechanisms of the retention and applicable to relatively small polypeptide molecules. A mechanism of the large biomacromolecule retention in reversed-phase gradient HPLC was described recently in thermodynamics terms by the analytical model of liquid chromatography at critical conditions (BioLCCC). In this work, we applied the BioLCCC model to predict retention of the intact proteins as well as their large proteolytic peptides separated under different HPLC conditions. The specific aim of these proof-of-principle studies was to demonstrate the feasibility of using “predictive” HPLC as a complementary tool to support the analysis of identified intact proteins in top-down, middle-down, and/or targeted selected reaction monitoring (SRM)-based proteomic experiments. Figure Intact protein LC retention time prediction assists protein identification in top- and middle-down proteomics
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-011-5350-3