Decrease in calcium-sensing receptor in the progress of diabetic cardiomyopathy

Abstract To observe the dynamic expression of calcium-sensing receptor (CaSR) in myocardium of diabetic rats and explore its role in diabetic cardiomyopathy (DCM), 40 male Wistar rats were randomly divided into 4 groups including control, diabetic-4 weeks, diabetic-8 weeks and spermine treatment gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes research and clinical practice 2012-03, Vol.95 (3), p.378-385
Hauptverfasser: Bai, Shu-zhi, Sun, Jian, Wu, Hao, Zhang, Ning, Li, Hong-xia, Li, Guang-wei, Li, Hong-zhu, He, Wen, Zhang, Wei-hua, Zhao, Ya-jun, Wang, Li-na, Tian, Ye, Yang, Bao-feng, Yang, Guang-dong, Wu, Ling-yun, Wang, Rui, Xu, Chang-qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract To observe the dynamic expression of calcium-sensing receptor (CaSR) in myocardium of diabetic rats and explore its role in diabetic cardiomyopathy (DCM), 40 male Wistar rats were randomly divided into 4 groups including control, diabetic-4 weeks, diabetic-8 weeks and spermine treatment groups (240 μM of spermine in drinking water). The type 2 Diabetes mellitus (DM) models were established by intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) after high-fat and high-sugar diet for one month. The echocardiographic parameters were measured, cardiac morphology was observed by electron microscope and HE staining. The intracellular calcium concentration ([Ca2+ ]i ) was detected by laser-scanning confocal microscope. Western blot analyzed the expression of CaSR, protein kinase C α(PKC-α) and calcium handling regulators, such as phospholamban (PLN), Ca2+ -ATPase (SERCA), and ryanodine receptor (RyR). Compared with control group, [Ca2+ ]i and the expression of CaSR, RyR and SERCA/PLN were decreased, while PKC-α and PLN were significantly increased in a time-dependent manner in diabetic groups. Meanwhile diabetic rats displayed abnormal cardiac structure and systolic and diastolic dysfunction, and spermine (CaSR agonist) could prevent or slow its progression. These results indicate that the CaSR expression of myocardium is reduced in the progress of DCM, and its potential mechanism is related to the impaired intracellular calcium homeostasis.
ISSN:0168-8227
1872-8227
DOI:10.1016/j.diabres.2011.11.007