Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize

A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2009/06/25, Vol.50(3), pp.117-125
Hauptverfasser: Oguchi, T.(National Food Research Inst., Tsukuba, Ibaraki (Japan)), Onishi, M, Minegishi, Y, Kurosawa, Y, Kasahara, M, Akiyama, H, Teshima, R, Futo, S, Furui, S, Hino, A, Kitta, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.
ISSN:0015-6426
1882-1006
DOI:10.3358/shokueishi.50.117