Direct synthesis of hydrogen peroxide using Au―Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent
The direct synthesis of hydrogen peroxide from molecular H2 and O2 represents a green and economic alternative to the current anthraquinone process used for the industrial production of H2O2. In order for the direct process to compete with the anthraquinone process, there is a need for enhanced H2O2...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2012, Vol.14 (1), p.170-181 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The direct synthesis of hydrogen peroxide from molecular H2 and O2 represents a green and economic alternative to the current anthraquinone process used for the industrial production of H2O2. In order for the direct process to compete with the anthraquinone process, there is a need for enhanced H2O2 yields and H2 selectivity in the process. We show that Au-Pd-exchanged and supported Cs-containing heteropolyacid catalysts with the Keggin structure are considerably more effective in achieving high H2O2 yields in the absence of acid or halide additives than previously reported catalysts. The Au-Pd-exchanged Cs-heteropolyacid catalysts also show superior H2O2 synthesis activity under challenging conditions (ambient temperature, water-only solvent and CO2-free reaction gas). Au plays a crucial role in achieving the improved performance of these heteropolyacid-based catalysts. The heteropolyacid limits the subsequential hydrogenation/decomposition of H2O2. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/c1gc15863e |