The Use of a High-Resolution Standardized Precipitation Index for Drought Monitoring and Assessment
A high-resolution drought-monitoring tool was developed to assess drought on multiple time scales using the standardized precipitation index (SPI). Daily precipitation data at 4-km resolution are obtained from the Advanced Hydrologic Prediction Service multisensor precipitation estimates (MPE) and a...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2012-01, Vol.51 (1), p.68-83 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high-resolution drought-monitoring tool was developed to assess drought on multiple time scales using the standardized precipitation index (SPI). Daily precipitation data at 4-km resolution are obtained from the Advanced Hydrologic Prediction Service multisensor precipitation estimates (MPE) and are aggregated on several time scales. Daily station precipitation data available from the Cooperative Observer Program (COOP) provide the historical context for the MPE precipitation data. Pearson type-III distribution parameters were interpolated to the 4-km grid on the basis of a regional frequency analysis of the COOP stations andL-moment ratios of the precipitation data. The resulting high-resolution SPI data can be used as guidance for the U.S. Drought Monitor at the subcounty scale in areas where local precipitation is the primary driver of drought. The temporal flexibility and spatial resolution of the drought-monitoring tool are used to illustrate the onset, intensity, and termination of the 2008–09 Texas drought, and the tool is shown to provide better county- and subcounty-scale information than do gauge-based products. |
---|---|
ISSN: | 1558-8424 1558-8432 |
DOI: | 10.1175/JAMC-D-10-05015.1 |