Downregulation of insulin-like growth factor-binding protein 7 in cisplatin-resistant non-small cell lung cancer
Cisplatin is an effective anticancer drug used to treat many types of cancer, including non-small cell lung carcinoma (NSCLCs), but development of resistance is the primary impediment in cancer treatment. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted tumor suppressor that is in...
Gespeichert in:
Veröffentlicht in: | Cancer biology & therapy 2012-02, Vol.13 (3), p.148-155 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cisplatin is an effective anticancer drug used to treat many types of cancer, including non-small cell lung carcinoma (NSCLCs), but development of resistance is the primary impediment in cancer treatment. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted tumor suppressor that is inactivated in human lung cancer. IGFBP7 is known to alter sensitivity to interferon-based anticancer therapy, and here, we examined loss of IGFBP7 as a potential contributor to chemo-resistance to cisplatin. The transcriptional level of IGFBP7 was decreased in cisplatin-resistant human cancer cell lines and NSCLC xenografts. IGFBP7 knock-down increased cellular resistance to cisplatin and increased the level of mitogen-activated protein kinase phosphatases (MKP) 3 levels. The expression of MKP3 increased in a cisplatin-resistant NSCLC cell line and lung xenografts. MKP3 knock-down increased IGFBP7 level, indicating that MKP3 regulates IGFBP7. These findings suggest a novel molecular mechanism responsible for the tumor suppressive function of IGFBP7 in cisplatin-resistant human lung cancer and could lead to the development of IGFBP7 as a cisplatin-sensitizing agent. |
---|---|
ISSN: | 1538-4047 1555-8576 |
DOI: | 10.4161/cbt.13.3.18695 |