Dynamics of expression patterns of AQP4, dystroglycan, agrin and matrix metalloproteinases in human glioblastoma

In human glioblastoma, the blood–brain barrier (BBB) is disturbed. According to our concept, the glio-vascular relationships and thus the control of the BBB are essentially dependent on the polarity of astroglial cells. This polarity is characterized by the uneven distribution of the water channel p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2012-02, Vol.347 (2), p.429-441
Hauptverfasser: Noell, Susan, Wolburg-Buchholz, Karen, Mack, Andreas F, Ritz, Rainer, Tatagiba, Marcos, Beschorner, Rudi, Wolburg, Hartwig, Fallier-Becker, Petra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In human glioblastoma, the blood–brain barrier (BBB) is disturbed. According to our concept, the glio-vascular relationships and thus the control of the BBB are essentially dependent on the polarity of astroglial cells. This polarity is characterized by the uneven distribution of the water channel protein aquaporin-4 (AQP4), dystroglycan and other molecules. Recently, we were able to show that the extracellular matrix component agrin is important for the construction and localization of the so-called orthogonal arrays of particles (OAPs), which consist in AQP4. Here, combining freeze-fracture electron microscopy, immunohistochemistry and Western blotting, we describe alterations of expression and distribution of AQP4, dystroglycan, agrin and the matrix metalloproteinases (MMP) 2, 3 and 9 in human primary glioblastomas (eight primary tumours, six recurrent tumours). Increase of MMP3- and MMP2/9 immunoreactivities went along with loss of agrin and dystroglycan respectively. On the protein level, AQP4 expression was increased in glioblastoma compared to control tissue. This was not accompanied by an increase of OAPs, suggesting that AQP4 can also occur without forming OAPs. The results underline our concept of the loss of glioma cell polarity as one of the factors responsible for the disturbance of the neurovascular unit and as an explanation for the formation of edemas in the glioblastoma.
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-011-1321-4