Endothelin-1 promotes cytoplasmic accumulation of RIP140 through a ET(A)-PLCβ-PKCε pathway
The physiological signal activating cytoplasmic accumulation of nuclear receptor interacting protein 140 (RIP140) in adipocytes was unclear. We uncover that endothelin-1 (ET-1) promotes cytoplasmic accumulation of RIP140 in 3T3-L1 adipocytes. We determine ET-1's signal transduction pathway in a...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular endocrinology 2012-04, Vol.351 (2), p.176-183 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The physiological signal activating cytoplasmic accumulation of nuclear receptor interacting protein 140 (RIP140) in adipocytes was unclear. We uncover that endothelin-1 (ET-1) promotes cytoplasmic accumulation of RIP140 in 3T3-L1 adipocytes. We determine ET-1's signal transduction pathway in adipocytes, which is by activating ET(A) receptor-PLCβ-nuclear PKCε. Blocking this pathway in 3T3-L1 adipocyte cultures, by treating cells with an ET(A) antagonist, inhibiting PLCβ, or silencing PKCε, reduces ET-1-stimulated cytoplasmic accumulation of RIP140. In a HFD-fed obese mouse model, administration of a selective ET(A) antagonist, ambrisentan, effectively dampens cytoplasmic accumulation of RIP140 in the epididymal adipose tissue and reduces HFD-caused adipocyte dysfunctions. Importantly, ambrisentan improves blood glucose control and reduces the severity of hepatic steatosis in HFD-fed mice. This study reports a physiological signal that stimulates nuclear export of RIP140 in adipocytes and provides evidence for a strategy using selective ET(A) antagonist to treat obesity-induced insulin resistance and, possibly, other metabolic disorders. |
---|---|
ISSN: | 1872-8057 |
DOI: | 10.1016/j.mce.2011.12.003 |