Optimization of Fenton's reagent coupled to Dissolved Air Flotation to remove cyanobacterial odorous metabolites and suspended solids from raw surface water

Ferrous salts are commonly used as coagulants in Water Treatment Plants (WTPs). When these salts are combined with hydrogen peroxide in acidic conditions - besides coagulation - an additional Advanced Oxidation Process (Fenton's reagent) can take place. Using a response surface methodology, thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2011-01, Vol.64 (8), p.1668-1674
Hauptverfasser: Elías-Maxil, Jorge A, Rigas, Fotis, Orta de Velásquez, María Teresa, Ramírez-Zamora, Rosa-María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferrous salts are commonly used as coagulants in Water Treatment Plants (WTPs). When these salts are combined with hydrogen peroxide in acidic conditions - besides coagulation - an additional Advanced Oxidation Process (Fenton's reagent) can take place. Using a response surface methodology, this paper presents the optimization of a novel treatment system constituted by Fenton's reagent (FE) and Dissolved Air Flotation (DAF) for removing 2-Methylisoborneol (MIB), geosmin and Total Suspended Solids (TSS) from raw water. FE was proven able to remove completely both micro pollutants found in the influent of a drinking water treatment plant. Moreover, higher clarification rate was achieved by coupling FE-DAF with respect FE-Sedimentation.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2011.528