Ecotype dependent expression and alternative splicing of epithiospecifier protein (ESP) in Arabidopsis thaliana

Epithiospecifier protein (ESP) is responsible for diverting glucosinolate hydrolysis from the generation of isothiocyanates to that of epithionitriles or nitriles, and thereby negatively affects the ability of the plant to defend itself against certain insects. Despite this important role of ESP, li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2012-03, Vol.78 (4-5), p.361-375
Hauptverfasser: Kissen, R., Hyldbakk, E., Wang, C.-W. V., Sørmo, C. G., Rossiter, J. T., Bones, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epithiospecifier protein (ESP) is responsible for diverting glucosinolate hydrolysis from the generation of isothiocyanates to that of epithionitriles or nitriles, and thereby negatively affects the ability of the plant to defend itself against certain insects. Despite this important role of ESP, little is known about its expression in plant tissues and the regulation thereof. We therefore investigated ESP expression by qPCR and Western blot in different organs during the growth cycle of the two Arabidopsis thaliana ecotypes Col-0 and Mt-0. Besides the fact that ESP transcript and protein levels were revealed to be much higher in Mt-0 than in Col-0 in all cases, our qPCR results also indicated that ESP expression is regulated differently in the two A . thaliana ecotypes. No ESP protein was detected by Western blot in any organ or developmental stage for Col-0. During the assays an alternative splice variant of ESP was identified in Col-0, but not Mt-0, leading to a mis-spliced transcript which could explain the low expression levels of ESP in the former ecotype. Analysis of genomic sequences containing the ESP splice sites, of ESP protein level and ESP activity from seven A . thaliana ecotypes showed a positive correlation between the presence of a non-canonical 5′ splice site for ESP and the absence of detectable ESP protein levels and ESP activity. When analysing the expression of both transcript variants in Col-0 after treatment with methyl jasmonate, a condition known to “induce ESP ”, it was indeed the alternative splice variant that was preferentially induced.
ISSN:0167-4412
1573-5028
DOI:10.1007/s11103-011-9869-7