Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model
The debate on the Mesozoic tectonics of the South China Block (SCB), featuring a broad orogenic belt and a large continental magmatic province, has been rejuvenated in the past years. There are a number of competing tectonic models, each predicting different time, space, and compositional evolutiona...
Gespeichert in:
Veröffentlicht in: | Lithos 2012-02, Vol.132, p.127-140 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The debate on the Mesozoic tectonics of the South China Block (SCB), featuring a broad orogenic belt and a large continental magmatic province, has been rejuvenated in the past years. There are a number of competing tectonic models, each predicting different time, space, and compositional evolutional trends for the Mesozoic igneous rocks, including sporadic basalts. In this paper, we report high precision
40Ar/
39Ar ages and geochemical and Sr–Nd isotopic data for basaltic rocks in central–eastern SCB. These results, together with a data compilation, indicate three evolutionary stages for the basalts. Stage 1 (195–160
Ma) basalts occur only in inland SCB. They exhibit low initial
87Sr/
86Sr ratios (0.7038 to 0.7078), high ε
Nd(t) values (−
1.5 to 6.0) and ocean island basalt (OIB)-like geochemical characteristics such as low La/Nb ratios (0.6 to 1.4), implying negligible to minor lithosphere contamination. Stage 2 (160–110
Ma) basalts, mostly from the same inland region with minor occurrence closer to the coast, are characterized by variable initial
87Sr/
86Sr ratios (0.7053 to 0.7102), εNd(t) values (−
6.0 to 5.0) and low La/Nb ratios (0.9 to 1.8), indicating an enhanced asthenosphere–lithosphere interaction. Stage 3 (110 to ≤
80
Ma) basalts can be further divided into two sub-groups based on their geographic and geochemical variations. Basalts in the coastal regions are characterized by low εNd(t) values (−
8.1 to 3.7) and variably high La/Nb ratios (up to 4.8) indicating a strong arc signature. On the other hand, basalts in the inland regions have high ε
Nd(t) values (−
1.9 to 6.8) and low La/Nb ratios (0.6 to 1.2) that are similar to the stage 1 basalts. We interpret these features as results of geodynamics processes related to the break-up, foundering and retreating of an early Mesozoic flat-subducted oceanic slab.
[Display omitted]
► Characterizing temporal–spatial distribution of Mesozoic basaltic rocks in South China. ► Secular changes in geochemical features in different parts of the continent. ► Independent evidence supporting the flat-slab subduction model. |
---|---|
ISSN: | 0024-4937 1872-6143 |
DOI: | 10.1016/j.lithos.2011.11.022 |