Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran
The prediction of groundwater levels in a well has immense importance in the management of groundwater resources, especially in arid regions. This paper investigates the abilities of neuro-fuzzy (NF) and artificial neural network (ANN) techniques to predict the groundwater levels. Two different NF a...
Gespeichert in:
Veröffentlicht in: | Journal of hydroinformatics 2011-10, Vol.13 (4), p.867-876 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prediction of groundwater levels in a well has immense importance in the management of groundwater resources, especially in arid regions. This paper investigates the abilities of neuro-fuzzy (NF) and artificial neural network (ANN) techniques to predict the groundwater levels. Two different NF and ANN models comprise various combinations of monthly variablities, that is, air temperature, rainfall and groundwater levels in neighboring wells. The result suggests that the NF and ANN techniques are a good choice for the prediction of groundwater levels in individual wells. Also based on comparisons, it is found that the NF computing techniques have better performance than the ANN models in this case. |
---|---|
ISSN: | 1464-7141 1465-1734 |
DOI: | 10.2166/hydro.2010.034 |