Assembly of CeO2-TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants
CeO(2)-TiO(2) nanoparticles were prepared by the sol-gel process using 2-hydroxylethylammonium formate as room-temperature ionic liquid and calcined at different temperatures (500-700°C). CeO(2)-TiO(2)-graphene nanocomposites were prepared by hydrothermal reaction of graphene oxide with CeO(2)-TiO(2...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2012-01, Vol.199-200, p.170-178 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CeO(2)-TiO(2) nanoparticles were prepared by the sol-gel process using 2-hydroxylethylammonium formate as room-temperature ionic liquid and calcined at different temperatures (500-700°C). CeO(2)-TiO(2)-graphene nanocomposites were prepared by hydrothermal reaction of graphene oxide with CeO(2)-TiO(2) nanoparticles in aqueous solution of ethanol. The photocatalysts were characterized by X-ray diffraction, BET surface area, diffuse reflectance spectroscopy, scanning electron microscopy, and Fourier transformed infrared techniques. The results demonstrate that the room-temperature ionic liquid inhibits the anatase-rutile phase transformation. This effect was promoted by addition of CeO(2) to TiO(2). The addition of graphene to CeO(2)-TiO(2) nanoparticles enhances electron transport and therefore impedes the charge recombination of excited TiO(2). The photodegradation results of the pollutants in aqueous medium under UV irradiation revealed that CeO(2)-TiO(2)-graphene nanocomposites exhibit much higher photocatalytic activity than CeO(2)-TiO(2) and pure TiO(2). The photocatalytic activity of CeO(2)-TiO(2)-graphene nanocomposites decreases with additional increasing of the graphene content. Moreover, comparison of the photocatalytic activities of CeO(2)-TiO(2)-graphene with the other CeO(2)-TiO(2)-carbon demonstrates that CeO(2)-TiO(2)-graphene nanocomposites have the highest photocatalytic activity due to their unique structure and electronic properties. Chemical oxygen demand for solutions of the pollutants gave a good idea about mineralization of them. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2011.10.080 |