Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment

Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the Geophysical Fluid Dynamics Laboratory (GFDL)-Princeton Flexible Modelling System (fms). As the first steps away from the dynamical b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2011-12, Vol.418 (4), p.2669-2696
Hauptverfasser: Heng, Kevin, Frierson, Dargan M. W., Phillipps, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the Geophysical Fluid Dynamics Laboratory (GFDL)-Princeton Flexible Modelling System (fms). As the first steps away from the dynamical benchmarks of Heng, Menou & Phillipps, we add dual-band radiative transfer and dry convective adjustment schemes to our computational set-up. Our treatment of radiative transfer assumes stellar irradiation to peak at a wavelength shorter than and distinct from that at which the exoplanet re-emits radiation ('shortwave' versus 'longwave'), and also uses a two-stream approximation. Convection is mimicked by adjusting unstable lapse rates to the dry adiabat. The bottom of the atmosphere is bounded by a uniform slab with a finite thermal inertia. For our models of hot Jupiter, we include an analytical formalism for calculating temperature-pressure profiles, in radiative equilibrium, which accounts for the effect of collision-induced absorption via a single parameter. We discuss our results within the context of the following: the predicted temperature-pressure profiles and the absence/presence of a temperature inversion; the possible maintenance, via atmospheric circulation, of the putative high-altitude, shortwave absorber expected to produce these inversions; the angular/temporal offset of the hotspot from the substellar point, its robustness to our ignorance of hyperviscosity and hence its utility in distinguishing between different hot Jovian atmospheres; and various zonal-mean flow quantities. Our work bridges the gap between three-dimensional simulations which are purely dynamical and those which incorporate multiband radiative transfer, thus contributing to the construction of a required hierarchy of three-dimensional theoretical models.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2011.19658.x