A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations
The presence of data gaps is always a concern in geophysical records, creating not only difficulty in interpretation but, more importantly, also a large source of uncertainty in data analysis. Filling the data gaps is a necessity for use in statistical modeling. There are numerous approaches for thi...
Gespeichert in:
Veröffentlicht in: | Environmental modelling & software : with environment data news 2012-04, Vol.30, p.139-142 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The presence of data gaps is always a concern in geophysical records, creating not only difficulty in interpretation but, more importantly, also a large source of uncertainty in data analysis. Filling the data gaps is a necessity for use in statistical modeling. There are numerous approaches for this purpose. However, particularly challenging are the increasing number of very large spatio-temporal datasets such as those from Earth observations satellites. Here we introduce an efficient three-dimensional method based on discrete cosine transforms, which explicitly utilizes information from both time and space to predict the missing values. To analyze its performance, the method was applied to a global soil moisture product derived from satellite images. We also executed a validation by introducing synthetic gaps. It is shown this method is capable of filling data gaps in the global soil moisture dataset with very high accuracy. |
---|---|
ISSN: | 1364-8152 1873-6726 |
DOI: | 10.1016/j.envsoft.2011.10.015 |