Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic "find-me" signal

Annexin A1 is an intracellular calcium/phospholipid-binding protein that is involved in membrane organization and the regulation of the immune system. It has been attributed an anti-inflammatory role at various control levels, and recently we could show that annexin A1 externalization during seconda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2012-01, Vol.188 (1), p.135-145
Hauptverfasser: Blume, Karin E, Soeroes, Szabolcs, Keppeler, Hildegard, Stevanovic, Stefan, Kretschmer, Dorothee, Rautenberg, Maren, Wesselborg, Sebastian, Lauber, Kirsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Annexin A1 is an intracellular calcium/phospholipid-binding protein that is involved in membrane organization and the regulation of the immune system. It has been attributed an anti-inflammatory role at various control levels, and recently we could show that annexin A1 externalization during secondary necrosis provides an important fail-safe mechanism counteracting inflammatory responses when the timely clearance of apoptotic cells has failed. As such, annexin A1 promotes the engulfment of dying cells and dampens the postphagocytic production of proinflammatory cytokines. In our current follow-up study, we report that exposure of annexin A1 during secondary necrosis coincided with proteolytic processing within its unique N-terminal domain by ADAM10. Most importantly, we demonstrate that the released peptide and culture supernatants of secondary necrotic, annexin A1-externalizing cells induced chemoattraction of monocytes, which was clearly reduced in annexin A1- or ADAM10-knockdown cells. Thus, altogether our findings indicate that annexin A1 externalization and its proteolytic processing into a chemotactic peptide represent final events during apoptosis, which after the transition to secondary necrosis contribute to the recruitment of monocytes and the prevention of inflammation.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1004073