Gate-Controlled Nonlinear Conductivity of Dirac Fermion in Graphene Field-Effect Transistors Measured by Terahertz Time-Domain Spectroscopy

We present terahertz spectroscopic measurements of Dirac fermion dynamics from a large-scale graphene that was grown by chemical vapor deposition and on which carrier density was modulated by electrostatic and chemical doping. The measured frequency-dependent optical sheet conductivity of graphene s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2012-02, Vol.12 (2), p.551-555
Hauptverfasser: Maeng, Inhee, Lim, Seongchu, Chae, Seung Jin, Lee, Young Hee, Choi, Hyunyong, Son, Joo-Hiuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present terahertz spectroscopic measurements of Dirac fermion dynamics from a large-scale graphene that was grown by chemical vapor deposition and on which carrier density was modulated by electrostatic and chemical doping. The measured frequency-dependent optical sheet conductivity of graphene shows electron-density-dependence characteristics, which can be understood by a simple Drude model. In a low carrier density regime, the optical sheet conductivity of graphene is constant regardless of the applied gate voltage, but in a high carrier density regime, it has nonlinear behavior with respect to the applied gate voltage. Chemical doping using viologen was found to be efficient in controlling the equilibrium Fermi level without sacrificing the unique carrier dynamics of graphene.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl202442b