Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses
Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analys...
Gespeichert in:
Veröffentlicht in: | Physical biology 2012-02, Vol.9 (1), p.016008-016008 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 016008 |
---|---|
container_issue | 1 |
container_start_page | 016008 |
container_title | Physical biology |
container_volume | 9 |
creator | Jimenez-Roldan, J E Freedman, R B Römer, R A Wells, S A |
description | Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits. |
doi_str_mv | 10.1088/1478-3975/9/1/016008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920786822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920786822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</originalsourceid><addsrcrecordid>eNo9kFtLwzAYhoMoTqf_QCR33libNGuSeifDEwwE0RtvQo4jkrYzacH9e1M2d_Ud3-_wAHCF0R1GnJd4wXhBGlaXTYlLhClC_AicHdLHB5-yGThP6RuhqqkQOwWzqiKYUMzPwNe73HgDk2_HIAffd7B3cBP7wfoOtv2UuYetjWvfraEL9tcrH_ywvYXRr73JHpSdgV0fWxmywNgcy7BNNl2AEydDspd7OwefT48fy5di9fb8unxYFZogOhROMkWoY3LhCHeMGYVcoxyiFdW11ayulaoVUshULteUxlnAsdZU1gTVhszBzW5uPvtntGkQrU_ahiA7249JTD9zyvPPc7DYderYpxStE5voWxm3AiMxQRUTMTHRE43AYgc1y673C0bVWnMQ_VMkf1_zdIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920786822</pqid></control><display><type>article</type><title>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jimenez-Roldan, J E ; Freedman, R B ; Römer, R A ; Wells, S A</creator><creatorcontrib>Jimenez-Roldan, J E ; Freedman, R B ; Römer, R A ; Wells, S A</creatorcontrib><description>Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.</description><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/9/1/016008</identifier><identifier>PMID: 22313618</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Computer Simulation ; Molecular Dynamics Simulation ; Motion ; Normal Distribution ; Protein Conformation ; Proteins - chemistry</subject><ispartof>Physical biology, 2012-02, Vol.9 (1), p.016008-016008</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</citedby><cites>FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22313618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez-Roldan, J E</creatorcontrib><creatorcontrib>Freedman, R B</creatorcontrib><creatorcontrib>Römer, R A</creatorcontrib><creatorcontrib>Wells, S A</creatorcontrib><title>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</title><title>Physical biology</title><addtitle>Phys Biol</addtitle><description>Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Motion</subject><subject>Normal Distribution</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFtLwzAYhoMoTqf_QCR33libNGuSeifDEwwE0RtvQo4jkrYzacH9e1M2d_Ud3-_wAHCF0R1GnJd4wXhBGlaXTYlLhClC_AicHdLHB5-yGThP6RuhqqkQOwWzqiKYUMzPwNe73HgDk2_HIAffd7B3cBP7wfoOtv2UuYetjWvfraEL9tcrH_ywvYXRr73JHpSdgV0fWxmywNgcy7BNNl2AEydDspd7OwefT48fy5di9fb8unxYFZogOhROMkWoY3LhCHeMGYVcoxyiFdW11ayulaoVUshULteUxlnAsdZU1gTVhszBzW5uPvtntGkQrU_ahiA7249JTD9zyvPPc7DYderYpxStE5voWxm3AiMxQRUTMTHRE43AYgc1y673C0bVWnMQ_VMkf1_zdIk</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Jimenez-Roldan, J E</creator><creator>Freedman, R B</creator><creator>Römer, R A</creator><creator>Wells, S A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</title><author>Jimenez-Roldan, J E ; Freedman, R B ; Römer, R A ; Wells, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Motion</topic><topic>Normal Distribution</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Roldan, J E</creatorcontrib><creatorcontrib>Freedman, R B</creatorcontrib><creatorcontrib>Römer, R A</creatorcontrib><creatorcontrib>Wells, S A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Roldan, J E</au><au>Freedman, R B</au><au>Römer, R A</au><au>Wells, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</atitle><jtitle>Physical biology</jtitle><addtitle>Phys Biol</addtitle><date>2012-02</date><risdate>2012</risdate><volume>9</volume><issue>1</issue><spage>016008</spage><epage>016008</epage><pages>016008-016008</pages><issn>1478-3967</issn><eissn>1478-3975</eissn><abstract>Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.</abstract><cop>England</cop><pmid>22313618</pmid><doi>10.1088/1478-3975/9/1/016008</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-3967 |
ispartof | Physical biology, 2012-02, Vol.9 (1), p.016008-016008 |
issn | 1478-3967 1478-3975 |
language | eng |
recordid | cdi_proquest_miscellaneous_920786822 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Algorithms Computer Simulation Molecular Dynamics Simulation Motion Normal Distribution Protein Conformation Proteins - chemistry |
title | Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20simulation%20of%20protein%20motion:%20merging%20flexibility,%20rigidity%20and%20normal%20mode%20analyses&rft.jtitle=Physical%20biology&rft.au=Jimenez-Roldan,%20J%20E&rft.date=2012-02&rft.volume=9&rft.issue=1&rft.spage=016008&rft.epage=016008&rft.pages=016008-016008&rft.issn=1478-3967&rft.eissn=1478-3975&rft_id=info:doi/10.1088/1478-3975/9/1/016008&rft_dat=%3Cproquest_cross%3E920786822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920786822&rft_id=info:pmid/22313618&rfr_iscdi=true |