Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses

Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical biology 2012-02, Vol.9 (1), p.016008-016008
Hauptverfasser: Jimenez-Roldan, J E, Freedman, R B, Römer, R A, Wells, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 016008
container_issue 1
container_start_page 016008
container_title Physical biology
container_volume 9
creator Jimenez-Roldan, J E
Freedman, R B
Römer, R A
Wells, S A
description Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.
doi_str_mv 10.1088/1478-3975/9/1/016008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920786822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920786822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</originalsourceid><addsrcrecordid>eNo9kFtLwzAYhoMoTqf_QCR33libNGuSeifDEwwE0RtvQo4jkrYzacH9e1M2d_Ud3-_wAHCF0R1GnJd4wXhBGlaXTYlLhClC_AicHdLHB5-yGThP6RuhqqkQOwWzqiKYUMzPwNe73HgDk2_HIAffd7B3cBP7wfoOtv2UuYetjWvfraEL9tcrH_ywvYXRr73JHpSdgV0fWxmywNgcy7BNNl2AEydDspd7OwefT48fy5di9fb8unxYFZogOhROMkWoY3LhCHeMGYVcoxyiFdW11ayulaoVUshULteUxlnAsdZU1gTVhszBzW5uPvtntGkQrU_ahiA7249JTD9zyvPPc7DYderYpxStE5voWxm3AiMxQRUTMTHRE43AYgc1y673C0bVWnMQ_VMkf1_zdIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920786822</pqid></control><display><type>article</type><title>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jimenez-Roldan, J E ; Freedman, R B ; Römer, R A ; Wells, S A</creator><creatorcontrib>Jimenez-Roldan, J E ; Freedman, R B ; Römer, R A ; Wells, S A</creatorcontrib><description>Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.</description><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/9/1/016008</identifier><identifier>PMID: 22313618</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Computer Simulation ; Molecular Dynamics Simulation ; Motion ; Normal Distribution ; Protein Conformation ; Proteins - chemistry</subject><ispartof>Physical biology, 2012-02, Vol.9 (1), p.016008-016008</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</citedby><cites>FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22313618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez-Roldan, J E</creatorcontrib><creatorcontrib>Freedman, R B</creatorcontrib><creatorcontrib>Römer, R A</creatorcontrib><creatorcontrib>Wells, S A</creatorcontrib><title>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</title><title>Physical biology</title><addtitle>Phys Biol</addtitle><description>Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Motion</subject><subject>Normal Distribution</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFtLwzAYhoMoTqf_QCR33libNGuSeifDEwwE0RtvQo4jkrYzacH9e1M2d_Ud3-_wAHCF0R1GnJd4wXhBGlaXTYlLhClC_AicHdLHB5-yGThP6RuhqqkQOwWzqiKYUMzPwNe73HgDk2_HIAffd7B3cBP7wfoOtv2UuYetjWvfraEL9tcrH_ywvYXRr73JHpSdgV0fWxmywNgcy7BNNl2AEydDspd7OwefT48fy5di9fb8unxYFZogOhROMkWoY3LhCHeMGYVcoxyiFdW11ayulaoVUshULteUxlnAsdZU1gTVhszBzW5uPvtntGkQrU_ahiA7249JTD9zyvPPc7DYderYpxStE5voWxm3AiMxQRUTMTHRE43AYgc1y673C0bVWnMQ_VMkf1_zdIk</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Jimenez-Roldan, J E</creator><creator>Freedman, R B</creator><creator>Römer, R A</creator><creator>Wells, S A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</title><author>Jimenez-Roldan, J E ; Freedman, R B ; Römer, R A ; Wells, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-fa7b36f7a4f38f77db0f9bf0626c5ec755bb5b0b0d2fdb0bc1a7b81cc6a5305d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Motion</topic><topic>Normal Distribution</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Roldan, J E</creatorcontrib><creatorcontrib>Freedman, R B</creatorcontrib><creatorcontrib>Römer, R A</creatorcontrib><creatorcontrib>Wells, S A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Roldan, J E</au><au>Freedman, R B</au><au>Römer, R A</au><au>Wells, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses</atitle><jtitle>Physical biology</jtitle><addtitle>Phys Biol</addtitle><date>2012-02</date><risdate>2012</risdate><volume>9</volume><issue>1</issue><spage>016008</spage><epage>016008</epage><pages>016008-016008</pages><issn>1478-3967</issn><eissn>1478-3975</eissn><abstract>Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.</abstract><cop>England</cop><pmid>22313618</pmid><doi>10.1088/1478-3975/9/1/016008</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1478-3967
ispartof Physical biology, 2012-02, Vol.9 (1), p.016008-016008
issn 1478-3967
1478-3975
language eng
recordid cdi_proquest_miscellaneous_920786822
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
Computer Simulation
Molecular Dynamics Simulation
Motion
Normal Distribution
Protein Conformation
Proteins - chemistry
title Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20simulation%20of%20protein%20motion:%20merging%20flexibility,%20rigidity%20and%20normal%20mode%20analyses&rft.jtitle=Physical%20biology&rft.au=Jimenez-Roldan,%20J%20E&rft.date=2012-02&rft.volume=9&rft.issue=1&rft.spage=016008&rft.epage=016008&rft.pages=016008-016008&rft.issn=1478-3967&rft.eissn=1478-3975&rft_id=info:doi/10.1088/1478-3975/9/1/016008&rft_dat=%3Cproquest_cross%3E920786822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920786822&rft_id=info:pmid/22313618&rfr_iscdi=true