Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses

Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical biology 2012-02, Vol.9 (1), p.016008-016008
Hauptverfasser: Jimenez-Roldan, J E, Freedman, R B, Römer, R A, Wells, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods--normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion--to explore conformational change along normal mode eigenvectors. Using a combination of ElNemo and First/Froda software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.
ISSN:1478-3967
1478-3975
DOI:10.1088/1478-3975/9/1/016008