FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction

Seven-nanometer FePt nanoparticles (NPs) were synthesized and assembled on graphene (G) by a solution-phase self-assembly method. These G/FePt NPs were a more active and durable catalyst for oxygen reduction reaction (ORR) in 0.1 M HClO4 than the same NPs or commercial Pt NPs deposited on convention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-02, Vol.134 (5), p.2492-2495
Hauptverfasser: Guo, Shaojun, Sun, Shouheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seven-nanometer FePt nanoparticles (NPs) were synthesized and assembled on graphene (G) by a solution-phase self-assembly method. These G/FePt NPs were a more active and durable catalyst for oxygen reduction reaction (ORR) in 0.1 M HClO4 than the same NPs or commercial Pt NPs deposited on conventional carbon support. The G/FePt NPs annealed at 100 °C for 1 h under Ar + 5% H2 exhibited specific ORR activities of 1.6 mA/cm2 at 0.512 V and 0.616 mA/cm2 at 0.557 V (vs Ag/AgCl). As a comparison, the commercial Pt NPs (2–3 nm) had specific activities of 0.271 and 0.07 mA/cm2 at the same potentials. The G/FePt NPs were also much more stable in the ORR condition and showed nearly no activity change after 10 000 potential sweeps. The work demonstrates that G is indeed a promising support to improve NP activity and durability for practical catalytic applications.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja2104334