Modulating Cell Behaviors on Chiral Polymer Brush Films with Different Hydrophobic Side Groups
Chirality is one of the significant biochemical signatures of life. Nearly all biological polymers are homochiral as they usually show high preference toward one specific enantiomer. This phenomenon inspires us to design biomaterials with chiral units and study their interactions with cells and othe...
Gespeichert in:
Veröffentlicht in: | Langmuir 2012-02, Vol.28 (5), p.2791-2798 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chirality is one of the significant biochemical signatures of life. Nearly all biological polymers are homochiral as they usually show high preference toward one specific enantiomer. This phenomenon inspires us to design biomaterials with chiral units and study their interactions with cells and other biological entities. In this article, through adopting three pairs of aliphatic amino acids with different hydrophobic side groups as chiral species, and using two adhesive cell lines as examples, we show that the chirality of polymer brushes can trigger differential cell behaviors on the enantiomorphous surfaces, and more interestingly, such chiral effect on cellular behaviors can be modulated in a certain extent by varying the hydrophobic side groups of the chiral moieties composing the polymers. This work not only proves the versatility of the chiral effect at the cell level but also demonstrates a method to bridge the gap between organic signal molecules and biomaterials. It thus points out a promising approach for designing novel biomaterials based on the chiral effect, which will be an important complement for conventional strategies in the study of biomaterials. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la204143g |