Net energy expenditure of gravity-independent high-speed resistive exercise done by women
Elevated metabolism is common to spaceflight while exercise in microgravity exacerbates energy costs. Thus in-flight exercise countermeasures must be devised that minimize energy costs as they are performed on hardware operable in microgravity. Female subjects (N = 28), subdivided into athletic and...
Gespeichert in:
Veröffentlicht in: | Aviation, space, and environmental medicine space, and environmental medicine, 2012-02, Vol.83 (2), p.111-117 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Elevated metabolism is common to spaceflight while exercise in microgravity exacerbates energy costs. Thus in-flight exercise countermeasures must be devised that minimize energy costs as they are performed on hardware operable in microgravity.
Female subjects (N = 28), subdivided into athletic and sedentary groups, each performed two workouts on a resistive exercise device (Impulse Training Systems; Newnan, GA). Comprised exclusively of either tonic or phasic repetitions, each exercise bout entailed two 1 -min sets interspersed by a 90-s rest from which the work volume was determined. Oxygen consumption was measured before, during, and after workouts until gas uptake returned to pre-exercise levels. Net oxygen consumption was converted to net energy expenditures via indirect calorimetry. Mean net energy expenditure and work volume values were each compared with 2 (athletes, sedentaries) x 2 (tonic, phasic) ANOVAs, with repeated measures for workout. In addition, multivariate regression employed three predictor (body mass, body fat percentage, work volume) variables to account for the net energy expenditure variance.
Workouts yielded a metabolic cost of approximately 14 kcal, yet the data produced no significant intergroup or workout differences. However, work volume analysis yielded a significant (tonic > phasic) effect. The multivariate analysis explained small yet significant amounts of net energy expenditure variance.
Current results: 1) are partly attributable to higher series elastic element activity seen with Impulse repetitions; and 2) offer new information with respect to in-flight exercise protocols for female astronauts. |
---|---|
ISSN: | 0095-6562 |
DOI: | 10.3357/ASEM.3159.2012 |