Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity: implications for nucleic acid delivery and gene therapy

The 25 kDa branched polyethylenimine (PEI) is a highly efficient synthetic polycation used in transfection protocols, but also triggers mitochondrial-mediated apoptotic cell death processes where the mechanistic issues are poorly understood. We now demonstrate that PEI in a concentration- and time-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mitochondrion 2012-01, Vol.12 (1), p.162-168
Hauptverfasser: Larsen, Anna K, Malinska, Dominika, Koszela-Piotrowska, Izabela, Parhamifar, Ladan, Hunter, A Christy, Moghimi, S Moein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 25 kDa branched polyethylenimine (PEI) is a highly efficient synthetic polycation used in transfection protocols, but also triggers mitochondrial-mediated apoptotic cell death processes where the mechanistic issues are poorly understood. We now demonstrate that PEI in a concentration- and time-dependent manner can affect functions (membrane potential, swelling and respiration) and ultrastructural integrity of freshly isolated rat liver mitochondria. The threshold concentration for detection of PEI-mediated impairment of rat liver mitochondrial functions is 3 μg/mL, however, lower PEI levels still exert some effects on mitochondrial morphology and respiration, and these may be related to the inherent membrane perturbing properties of this polycation. The PEI-mediated mitochondrial swelling phase is biphasic, with a fast decaying initial period (most prominent from 4 μg/mL PEI) followed by a slower, linear swelling response. The slow phase is presumably the result of a time-dependent transition permeability opening in mitochondria initially resistant to swelling/depolarization, but may further be related to PEI-induced nanoscale structural defects and/or formation of pores in the outer membrane. Respiration assessments further suggested that PEI in the presence of exogenous ADP behaves in a similar fashion to a slow-acting inhibitory compound. PEI further shows an uncoupling property that is detectable at low respiration rates. The relevance of these findings to PEI-mediated initiation of intrinsic apoptotic pathway is discussed.
ISSN:1567-7249
1872-8278
DOI:10.1016/j.mito.2011.08.013