Automatic item generation of probability word problems

Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in educational evaluation 2009-06, Vol.35 (2), p.71-76
Hauptverfasser: Holling, Heinz, Bertling, Jonas P., Zeuch, Nina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems based on templates that allow for the generation of word problems involving different topics from probability theory. It was tested in a pilot study with N = 146 German university students. The items show a good fit to the Rasch model. Item difficulties can be explained by the Linear Logistic Test Model (LLTM) and by the random-effects LLTM. The practical implications of these findings for future test development in the assessment of probability competencies are also discussed.
ISSN:0191-491X
1879-2529
DOI:10.1016/j.stueduc.2009.10.004