Automatic item generation of probability word problems
Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the aut...
Gespeichert in:
Veröffentlicht in: | Studies in educational evaluation 2009-06, Vol.35 (2), p.71-76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems based on templates that allow for the generation of word problems involving different topics from probability theory. It was tested in a pilot study with
N
=
146 German university students. The items show a good fit to the Rasch model. Item difficulties can be explained by the Linear Logistic Test Model (LLTM) and by the random-effects LLTM. The practical implications of these findings for future test development in the assessment of probability competencies are also discussed. |
---|---|
ISSN: | 0191-491X 1879-2529 |
DOI: | 10.1016/j.stueduc.2009.10.004 |