Synthesis of biocompatible nanocomposite hydrogels as a local drug delivery system

Nanocomposite biocompatible hydrogels (NCHG) were synthesised as model systems for in situ cured potentially local drug delivery devices for curing periodontal infections. The composite consists of the following components: nanoparticles (NPs), matrix gel, and chlorhexidine (CHX) as antibacterial dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2008-03, Vol.286 (3), p.357-363
Hauptverfasser: Bako, Jozsef, Szepesi, Marta, Veres, Adrienn J., Cserhati, Csaba, Borbely, Zsuzsa M., Hegedus, Csaba, Borbely, Janos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocomposite biocompatible hydrogels (NCHG) were synthesised as model systems for in situ cured potentially local drug delivery devices for curing periodontal infections. The composite consists of the following components: nanoparticles (NPs), matrix gel, and chlorhexidine (CHX) as antibacterial drug. The NPs were obtained by free radical initiated copolymerization of the monomers, 2-hydroxyethyl methacrylate (HEMA) and polyethyleneglycol dimethacrylate (PEGDMA), in aqueous solution. The same monomers were used to prepare crosslinked matrices by photopolymerization. NCHGs were obtained by mixing NPs, monomers, and drug in an aqueous solution then crosslinked by photopolymerization. Mechanical properties, swelling behavior, and the kinetics of drug release have been investigated. It was found that compression strength values increased with increasing ratio of the crosslinker PEGDMA. Incorporation of NPs into the matrix resulted similar compression strength as the matrix hydrogel. The hydrated NCHGs swelled more slowly but admitted more water. The drug was incorporated in NPs by swelling in CHX aqueous solution or added to the solution of monomer mixture followed by photopolymerization. Studies of release kinetics revealed that on average 60% of the loaded drug was released. The most rapid release was observed over a 24 h period for matrix gels with low crosslinking density. For NCHGs, the release period exceeded 48 h. An unexpected result was observed for NCHGs without drug in the NPs. In this case, increasing release was observed for the first 24 h. Thereafter, however, the apparent quantity of detectable drug decreased dramatically.
ISSN:0303-402X
1435-1536
DOI:10.1007/s00396-007-1793-7