Absence of Singlet Fission and Carrier Multiplication in a Model Conjugated Polymer: Tracking the Triplet Population through Phosphorescence
Singlet fission, or multiple exciton generation, has been purported to occur in a variety of material systems. Given the current interest in exploiting this process in photovoltaics, we search for the direct signature of singlet fission, phosphorescence from the triplet state, in a model polymeric o...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2012-02, Vol.134 (4), p.1946-1949 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Singlet fission, or multiple exciton generation, has been purported to occur in a variety of material systems. Given the current interest in exploiting this process in photovoltaics, we search for the direct signature of singlet fission, phosphorescence from the triplet state, in a model polymeric organic semiconductor for which photoinduced absorption experiments have implied a tripling of the intersystem crossing yield at the onset of fission. Fluorescence and phosphorescence are clearly discriminated using a picosecond gated photoluminescence excitation technique, at variable temperature. At low excitation densities, in a quasi-steady-state experiment, we detect no change of the relative triplet yield to within 4% for photon energies of almost three times the triplet energy of 2.1 eV. Identical results are obtained under nonlinear two-photon excitation. We conclude that assignments of singlet fission based on induced absorptions alone should be treated with caution and may substantially overestimate excited-state intersystem crossing yields, raising questions with regards to the applicability of the process in devices. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja2102289 |