Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm

A distributed feedback (DFB) laser diode emitting at 785 nm was tested and applied as a light source for shifted excitation Raman difference spectroscopy (SERDS). Due to the physical properties of the laser diode, it was possible to shift the emission wavelength by 8 cm-1 (0.5 nm) required for our S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2006-12, Vol.85 (4), p.509-512
Hauptverfasser: MAIWALD, M, ERBERT, G, KLEHR, A, KRONFELDT, H.-D, SCHMIDT, H, SUMPF, B, TRÄNKLE, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A distributed feedback (DFB) laser diode emitting at 785 nm was tested and applied as a light source for shifted excitation Raman difference spectroscopy (SERDS). Due to the physical properties of the laser diode, it was possible to shift the emission wavelength by 8 cm-1 (0.5 nm) required for our SERDS measurements by simply changing the injection current. The internal grating ensured single mode operation at both wavelength with the frequency stability of ?0.06 cm-1 (0.004 nm) required for high resolution Raman spectroscopic applications. The shifted spectra were used for calculating enhanced Raman spectra being obscured by a strong scattering background. A 16 dB ( Delta #~38 fold) improvement of the signal-to-background noise S/ Delta *sB was demonstrated using blackboard chalk as a sample. The tunable DFB laser is a versatile excitation source for SERDS, which could be used in any dispersive Raman system to subtract fluorescence contributions and scattering background.
ISSN:0946-2171
1432-0649
DOI:10.1007/s00340-006-2459-8