Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential
As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10 -13 fractional abso...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2008-09, Vol.92 (3), p.313-326, Article 313 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 3 |
container_start_page | 313 |
container_title | Applied physics. B, Lasers and optics |
container_volume | 92 |
creator | Foltynowicz, A. Schmidt, F.M. Ma, W. Axner, O. |
description | As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10
-13
fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed. |
doi_str_mv | 10.1007/s00340-008-3126-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919948491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919948491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</originalsourceid><addsrcrecordid>eNp1kE2LFDEQhoMoOO7uD_AWEPEUraSTdOJNhvUDFvfinkMmXe322t1p8yHM_nqzzKIgWJc61FMvVQ8hLzm85QD9uwzQSWAAhnVcaHb_hOy47AQDLe1TsgMrNRO858_Ji5zvoJU2Zkd-fI1TRjYtS12RBv9rKkeG661fAw40bmUKfqa3WDDF4diQJc4Y6uwTzRuGkmIOcTu-p_uaEq6F5uJLzdSvAx1rqQnpFksbTH4-J89GP2e8eOxn5Obj5bf9Z3Z1_enL_sMVC11vCuMh8EErRDtypbXpQSiv_KhBjL6XShrd6UHr3tiDHHyA4MOBSzH2_CDAD90ZeXPK3VL8WTEXt0w54Dz7FWPNznJrpZGWN_LVP-RdrGltxzmhteKd1Eo2ip-o0L7NCUe3pWnx6eg4uAf77mTfNfvuwb67bzuvH5N9bgbH1IRO-c-iAK2UBdM4ceJyG63fMf294P_hvwFnOZbH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665134654</pqid></control><display><type>article</type><title>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</title><source>Springer Nature - Complete Springer Journals</source><creator>Foltynowicz, A. ; Schmidt, F.M. ; Ma, W. ; Axner, O.</creator><creatorcontrib>Foltynowicz, A. ; Schmidt, F.M. ; Ma, W. ; Axner, O.</creatorcontrib><description>As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10
-13
fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-008-3126-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Absorption ; Applied physics ; Atomic and molecular physics ; Biological and medical applications ; Engineering ; Exact sciences and technology ; Frequency standards ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Laser spectroscopy ; Lasers ; Molecular properties and interactions with photons ; Molecular spectra ; Molecular spectroscopy ; Noise ; Noise sensitivity ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Spectrum analysis ; Trace gases</subject><ispartof>Applied physics. B, Lasers and optics, 2008-09, Vol.92 (3), p.313-326, Article 313</ispartof><rights>Springer-Verlag 2008</rights><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</citedby><cites>FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-008-3126-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-008-3126-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20655908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Foltynowicz, A.</creatorcontrib><creatorcontrib>Schmidt, F.M.</creatorcontrib><creatorcontrib>Ma, W.</creatorcontrib><creatorcontrib>Axner, O.</creatorcontrib><title>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10
-13
fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed.</description><subject>Absorption</subject><subject>Applied physics</subject><subject>Atomic and molecular physics</subject><subject>Biological and medical applications</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Frequency standards</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Laser spectroscopy</subject><subject>Lasers</subject><subject>Molecular properties and interactions with photons</subject><subject>Molecular spectra</subject><subject>Molecular spectroscopy</subject><subject>Noise</subject><subject>Noise sensitivity</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Spectrum analysis</subject><subject>Trace gases</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE2LFDEQhoMoOO7uD_AWEPEUraSTdOJNhvUDFvfinkMmXe322t1p8yHM_nqzzKIgWJc61FMvVQ8hLzm85QD9uwzQSWAAhnVcaHb_hOy47AQDLe1TsgMrNRO858_Ji5zvoJU2Zkd-fI1TRjYtS12RBv9rKkeG661fAw40bmUKfqa3WDDF4diQJc4Y6uwTzRuGkmIOcTu-p_uaEq6F5uJLzdSvAx1rqQnpFksbTH4-J89GP2e8eOxn5Obj5bf9Z3Z1_enL_sMVC11vCuMh8EErRDtypbXpQSiv_KhBjL6XShrd6UHr3tiDHHyA4MOBSzH2_CDAD90ZeXPK3VL8WTEXt0w54Dz7FWPNznJrpZGWN_LVP-RdrGltxzmhteKd1Eo2ip-o0L7NCUe3pWnx6eg4uAf77mTfNfvuwb67bzuvH5N9bgbH1IRO-c-iAK2UBdM4ceJyG63fMf294P_hvwFnOZbH</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Foltynowicz, A.</creator><creator>Schmidt, F.M.</creator><creator>Ma, W.</creator><creator>Axner, O.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>20080901</creationdate><title>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</title><author>Foltynowicz, A. ; Schmidt, F.M. ; Ma, W. ; Axner, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Absorption</topic><topic>Applied physics</topic><topic>Atomic and molecular physics</topic><topic>Biological and medical applications</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Frequency standards</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Laser spectroscopy</topic><topic>Lasers</topic><topic>Molecular properties and interactions with photons</topic><topic>Molecular spectra</topic><topic>Molecular spectroscopy</topic><topic>Noise</topic><topic>Noise sensitivity</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Spectrum analysis</topic><topic>Trace gases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foltynowicz, A.</creatorcontrib><creatorcontrib>Schmidt, F.M.</creatorcontrib><creatorcontrib>Ma, W.</creatorcontrib><creatorcontrib>Axner, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foltynowicz, A.</au><au>Schmidt, F.M.</au><au>Ma, W.</au><au>Axner, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>92</volume><issue>3</issue><spage>313</spage><epage>326</epage><pages>313-326</pages><artnum>313</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10
-13
fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00340-008-3126-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2171 |
ispartof | Applied physics. B, Lasers and optics, 2008-09, Vol.92 (3), p.313-326, Article 313 |
issn | 0946-2171 1432-0649 |
language | eng |
recordid | cdi_proquest_miscellaneous_919948491 |
source | Springer Nature - Complete Springer Journals |
subjects | Absorption Applied physics Atomic and molecular physics Biological and medical applications Engineering Exact sciences and technology Frequency standards Fundamental areas of phenomenology (including applications) General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Laser spectroscopy Lasers Molecular properties and interactions with photons Molecular spectra Molecular spectroscopy Noise Noise sensitivity Optical Devices Optics Photonics Physical Chemistry Physics Physics and Astronomy Quantum Optics Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Spectrum analysis Trace gases |
title | Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-immune%20cavity-enhanced%20optical%20heterodyne%20molecular%20spectroscopy:%20Current%20status%20and%20future%20potential&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Foltynowicz,%20A.&rft.date=2008-09-01&rft.volume=92&rft.issue=3&rft.spage=313&rft.epage=326&rft.pages=313-326&rft.artnum=313&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-008-3126-z&rft_dat=%3Cproquest_cross%3E919948491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665134654&rft_id=info:pmid/&rfr_iscdi=true |