Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential

As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10 -13 fractional abso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2008-09, Vol.92 (3), p.313-326, Article 313
Hauptverfasser: Foltynowicz, A., Schmidt, F.M., Ma, W., Axner, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 3
container_start_page 313
container_title Applied physics. B, Lasers and optics
container_volume 92
creator Foltynowicz, A.
Schmidt, F.M.
Ma, W.
Axner, O.
description As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10 -13 fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed.
doi_str_mv 10.1007/s00340-008-3126-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919948491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919948491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</originalsourceid><addsrcrecordid>eNp1kE2LFDEQhoMoOO7uD_AWEPEUraSTdOJNhvUDFvfinkMmXe322t1p8yHM_nqzzKIgWJc61FMvVQ8hLzm85QD9uwzQSWAAhnVcaHb_hOy47AQDLe1TsgMrNRO858_Ji5zvoJU2Zkd-fI1TRjYtS12RBv9rKkeG661fAw40bmUKfqa3WDDF4diQJc4Y6uwTzRuGkmIOcTu-p_uaEq6F5uJLzdSvAx1rqQnpFksbTH4-J89GP2e8eOxn5Obj5bf9Z3Z1_enL_sMVC11vCuMh8EErRDtypbXpQSiv_KhBjL6XShrd6UHr3tiDHHyA4MOBSzH2_CDAD90ZeXPK3VL8WTEXt0w54Dz7FWPNznJrpZGWN_LVP-RdrGltxzmhteKd1Eo2ip-o0L7NCUe3pWnx6eg4uAf77mTfNfvuwb67bzuvH5N9bgbH1IRO-c-iAK2UBdM4ceJyG63fMf294P_hvwFnOZbH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665134654</pqid></control><display><type>article</type><title>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</title><source>Springer Nature - Complete Springer Journals</source><creator>Foltynowicz, A. ; Schmidt, F.M. ; Ma, W. ; Axner, O.</creator><creatorcontrib>Foltynowicz, A. ; Schmidt, F.M. ; Ma, W. ; Axner, O.</creatorcontrib><description>As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10 -13 fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-008-3126-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Absorption ; Applied physics ; Atomic and molecular physics ; Biological and medical applications ; Engineering ; Exact sciences and technology ; Frequency standards ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Laser spectroscopy ; Lasers ; Molecular properties and interactions with photons ; Molecular spectra ; Molecular spectroscopy ; Noise ; Noise sensitivity ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Spectrum analysis ; Trace gases</subject><ispartof>Applied physics. B, Lasers and optics, 2008-09, Vol.92 (3), p.313-326, Article 313</ispartof><rights>Springer-Verlag 2008</rights><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</citedby><cites>FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-008-3126-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-008-3126-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20655908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Foltynowicz, A.</creatorcontrib><creatorcontrib>Schmidt, F.M.</creatorcontrib><creatorcontrib>Ma, W.</creatorcontrib><creatorcontrib>Axner, O.</creatorcontrib><title>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10 -13 fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed.</description><subject>Absorption</subject><subject>Applied physics</subject><subject>Atomic and molecular physics</subject><subject>Biological and medical applications</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Frequency standards</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Laser spectroscopy</subject><subject>Lasers</subject><subject>Molecular properties and interactions with photons</subject><subject>Molecular spectra</subject><subject>Molecular spectroscopy</subject><subject>Noise</subject><subject>Noise sensitivity</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Spectrum analysis</subject><subject>Trace gases</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE2LFDEQhoMoOO7uD_AWEPEUraSTdOJNhvUDFvfinkMmXe322t1p8yHM_nqzzKIgWJc61FMvVQ8hLzm85QD9uwzQSWAAhnVcaHb_hOy47AQDLe1TsgMrNRO858_Ji5zvoJU2Zkd-fI1TRjYtS12RBv9rKkeG661fAw40bmUKfqa3WDDF4diQJc4Y6uwTzRuGkmIOcTu-p_uaEq6F5uJLzdSvAx1rqQnpFksbTH4-J89GP2e8eOxn5Obj5bf9Z3Z1_enL_sMVC11vCuMh8EErRDtypbXpQSiv_KhBjL6XShrd6UHr3tiDHHyA4MOBSzH2_CDAD90ZeXPK3VL8WTEXt0w54Dz7FWPNznJrpZGWN_LVP-RdrGltxzmhteKd1Eo2ip-o0L7NCUe3pWnx6eg4uAf77mTfNfvuwb67bzuvH5N9bgbH1IRO-c-iAK2UBdM4ceJyG63fMf294P_hvwFnOZbH</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Foltynowicz, A.</creator><creator>Schmidt, F.M.</creator><creator>Ma, W.</creator><creator>Axner, O.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>20080901</creationdate><title>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</title><author>Foltynowicz, A. ; Schmidt, F.M. ; Ma, W. ; Axner, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1cc1d65ee9f156687025a5af602fa74548636d66789b4dac0cacb142f71b20ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Absorption</topic><topic>Applied physics</topic><topic>Atomic and molecular physics</topic><topic>Biological and medical applications</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Frequency standards</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Laser spectroscopy</topic><topic>Lasers</topic><topic>Molecular properties and interactions with photons</topic><topic>Molecular spectra</topic><topic>Molecular spectroscopy</topic><topic>Noise</topic><topic>Noise sensitivity</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Spectrum analysis</topic><topic>Trace gases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foltynowicz, A.</creatorcontrib><creatorcontrib>Schmidt, F.M.</creatorcontrib><creatorcontrib>Ma, W.</creatorcontrib><creatorcontrib>Axner, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foltynowicz, A.</au><au>Schmidt, F.M.</au><au>Ma, W.</au><au>Axner, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>92</volume><issue>3</issue><spage>313</spage><epage>326</epage><pages>313-326</pages><artnum>313</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>As a result of a combination of an external cavity and modulation techniques, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is one of the most sensitive absorption techniques, capable of reaching close-to-shot-noise sensitivities, down to 5×10 -13 fractional absorption at 1 s averaging. Due to its ability to provide sub-Doppler signals from weak molecular overtone transitions, the technique was first developed for frequency standard applications. It has since then also found use in fields of molecular spectroscopy of weak overtone transitions and trace gas detection. This paper describes the principles and the unique properties of NICE-OHMS. The historical background, the contributions of various groups, as well as the performance and present status of the technique are reviewed. Recent progress is highlighted and the future potential of the technique for trace species detection is discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00340-008-3126-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2008-09, Vol.92 (3), p.313-326, Article 313
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_919948491
source Springer Nature - Complete Springer Journals
subjects Absorption
Applied physics
Atomic and molecular physics
Biological and medical applications
Engineering
Exact sciences and technology
Frequency standards
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Laser spectroscopy
Lasers
Molecular properties and interactions with photons
Molecular spectra
Molecular spectroscopy
Noise
Noise sensitivity
Optical Devices
Optics
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Optics
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Spectrum analysis
Trace gases
title Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-immune%20cavity-enhanced%20optical%20heterodyne%20molecular%20spectroscopy:%20Current%20status%20and%20future%20potential&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Foltynowicz,%20A.&rft.date=2008-09-01&rft.volume=92&rft.issue=3&rft.spage=313&rft.epage=326&rft.pages=313-326&rft.artnum=313&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-008-3126-z&rft_dat=%3Cproquest_cross%3E919948491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665134654&rft_id=info:pmid/&rfr_iscdi=true