Perfect matchings as IID factors on non-amenable groups
We prove that in every bipartite Cayley graph of every non-amenable group, there is a perfect matching that is obtained as a factor of independent uniform random variables. We also discuss expansion properties of factors and improve the Hoffman spectral bound on the independence number of finite gra...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2011-10, Vol.32 (7), p.1115-1125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that in every bipartite Cayley graph of every non-amenable group, there is a perfect matching that is obtained as a factor of independent uniform random variables. We also discuss expansion properties of factors and improve the Hoffman spectral bound on the independence number of finite graphs. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2011.03.008 |