On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications

In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular, we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-04, Vol.55 (4), p.1534-1554
Hauptverfasser: Levy, N., Somekh, O., Shamai, S., Zeitouni, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1554
container_issue 4
container_start_page 1534
container_title IEEE transactions on information theory
container_volume 55
creator Levy, N.
Somekh, O.
Shamai, S.
Zeitouni, O.
description In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular, we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed-form expression for the per-cell sum-rate of this channel in high signal-to-noise ratio (SNR), when an intra-cell time-division multiple-access (TDMA) protocol is employed. Since the matrices of interest are tridiagonal , their eigenvectors can be considered as sequences with second-order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two-by-two matrices. For the case where K users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds.
doi_str_mv 10.1109/TIT.2009.2013046
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919944578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4802316</ieee_id><sourcerecordid>1666109391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c1f8556c92ee36b78c0ba4026f3cd6048557c0bfd7dfc3625bcbd4518d15bbb63</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWKt7wU0Q1NVoMnlMspTio1IpSMWdIZPJaGQmqcl04b83pdWFCzcJuee7hxwOAMcYXWKM5NViurgsEZL5wARRvgNGmLGqkJzRXTBCCItCUir2wUFKH_lJGS5H4HXu4cTGQTsPZzq-WfikfRN6eG9j7wanPXzQJtQOPuohOmMTfHHDO7xeLjtn9OCCT3AIeRhtZ1OCk9D3K_8jHYK9VnfJHm3vMXi-vVlM7ovZ_G46uZ4VhggyFAa3gjFuZGkt4XUlDKo1RSVviWk4olms8qhtqqY1hJesNnWTA4gGs7quORmDi43vMobPlU2D6l0ytuu0t2GVlMQyh2eVyOT5vyShnJQVwRk8_QN-hFX0OYXCkknChFy7oQ1kYkgp2lYto-t1_FIYqXUvKvei1r2obS955Wzrq5PRXRu1Ny797pWYVvmzVeZONpyz1v7KVKCSYE6-AYrSld4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195935898</pqid></control><display><type>article</type><title>On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Levy, N. ; Somekh, O. ; Shamai, S. ; Zeitouni, O.</creator><creatorcontrib>Levy, N. ; Somekh, O. ; Shamai, S. ; Zeitouni, O.</creatorcontrib><description>In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular, we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed-form expression for the per-cell sum-rate of this channel in high signal-to-noise ratio (SNR), when an intra-cell time-division multiple-access (TDMA) protocol is employed. Since the matrices of interest are tridiagonal , their eigenvectors can be considered as sequences with second-order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two-by-two matrices. For the case where K users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2013046</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Closed-form solution ; Coding, codes ; Decoding ; Detection, estimation, filtering, equalization, prediction ; Distributed antenna array ; Exact sciences and technology ; Exact solutions ; Fading ; fading channels ; high-signal-to-noise-ratio (SNR) characterization ; Information theory ; Information, signal and communications theory ; Jacobian matrices ; Mathematical analysis ; Matrices ; Matrix methods ; Mobile communication ; multiuser detection ; Protocols ; random matrices ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Statistics ; Studies ; sum-rate capacity ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Time Division Multiple Access ; Transmission and modulation (techniques and equipments) ; Wireless communication ; Wireless communications ; Wyner cellular uplink</subject><ispartof>IEEE transactions on information theory, 2009-04, Vol.55 (4), p.1534-1554</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c1f8556c92ee36b78c0ba4026f3cd6048557c0bfd7dfc3625bcbd4518d15bbb63</citedby><cites>FETCH-LOGICAL-c383t-c1f8556c92ee36b78c0ba4026f3cd6048557c0bfd7dfc3625bcbd4518d15bbb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4802316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4802316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21471997$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Levy, N.</creatorcontrib><creatorcontrib>Somekh, O.</creatorcontrib><creatorcontrib>Shamai, S.</creatorcontrib><creatorcontrib>Zeitouni, O.</creatorcontrib><title>On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular, we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed-form expression for the per-cell sum-rate of this channel in high signal-to-noise ratio (SNR), when an intra-cell time-division multiple-access (TDMA) protocol is employed. Since the matrices of interest are tridiagonal , their eigenvectors can be considered as sequences with second-order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two-by-two matrices. For the case where K users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Closed-form solution</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Distributed antenna array</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fading</subject><subject>fading channels</subject><subject>high-signal-to-noise-ratio (SNR) characterization</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Jacobian matrices</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Mobile communication</subject><subject>multiuser detection</subject><subject>Protocols</subject><subject>random matrices</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Statistics</subject><subject>Studies</subject><subject>sum-rate capacity</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Time Division Multiple Access</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wyner cellular uplink</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLAzEUhYMoWKt7wU0Q1NVoMnlMspTio1IpSMWdIZPJaGQmqcl04b83pdWFCzcJuee7hxwOAMcYXWKM5NViurgsEZL5wARRvgNGmLGqkJzRXTBCCItCUir2wUFKH_lJGS5H4HXu4cTGQTsPZzq-WfikfRN6eG9j7wanPXzQJtQOPuohOmMTfHHDO7xeLjtn9OCCT3AIeRhtZ1OCk9D3K_8jHYK9VnfJHm3vMXi-vVlM7ovZ_G46uZ4VhggyFAa3gjFuZGkt4XUlDKo1RSVviWk4olms8qhtqqY1hJesNnWTA4gGs7quORmDi43vMobPlU2D6l0ytuu0t2GVlMQyh2eVyOT5vyShnJQVwRk8_QN-hFX0OYXCkknChFy7oQ1kYkgp2lYto-t1_FIYqXUvKvei1r2obS955Wzrq5PRXRu1Ny797pWYVvmzVeZONpyz1v7KVKCSYE6-AYrSld4</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Levy, N.</creator><creator>Somekh, O.</creator><creator>Shamai, S.</creator><creator>Zeitouni, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090401</creationdate><title>On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications</title><author>Levy, N. ; Somekh, O. ; Shamai, S. ; Zeitouni, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c1f8556c92ee36b78c0ba4026f3cd6048557c0bfd7dfc3625bcbd4518d15bbb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Closed-form solution</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Distributed antenna array</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fading</topic><topic>fading channels</topic><topic>high-signal-to-noise-ratio (SNR) characterization</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Jacobian matrices</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Mobile communication</topic><topic>multiuser detection</topic><topic>Protocols</topic><topic>random matrices</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Statistics</topic><topic>Studies</topic><topic>sum-rate capacity</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Time Division Multiple Access</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wyner cellular uplink</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, N.</creatorcontrib><creatorcontrib>Somekh, O.</creatorcontrib><creatorcontrib>Shamai, S.</creatorcontrib><creatorcontrib>Zeitouni, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Levy, N.</au><au>Somekh, O.</au><au>Shamai, S.</au><au>Zeitouni, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>55</volume><issue>4</issue><spage>1534</spage><epage>1554</epage><pages>1534-1554</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular, we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed-form expression for the per-cell sum-rate of this channel in high signal-to-noise ratio (SNR), when an intra-cell time-division multiple-access (TDMA) protocol is employed. Since the matrices of interest are tridiagonal , their eigenvectors can be considered as sequences with second-order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two-by-two matrices. For the case where K users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2013046</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2009-04, Vol.55 (4), p.1534-1554
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_919944578
source IEEE Electronic Library (IEL)
subjects Applied sciences
Channels
Closed-form solution
Coding, codes
Decoding
Detection, estimation, filtering, equalization, prediction
Distributed antenna array
Exact sciences and technology
Exact solutions
Fading
fading channels
high-signal-to-noise-ratio (SNR) characterization
Information theory
Information, signal and communications theory
Jacobian matrices
Mathematical analysis
Matrices
Matrix methods
Mobile communication
multiuser detection
Protocols
random matrices
Signal and communications theory
Signal to noise ratio
Signal, noise
Statistics
Studies
sum-rate capacity
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Time Division Multiple Access
Transmission and modulation (techniques and equipments)
Wireless communication
Wireless communications
Wyner cellular uplink
title On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Certain%20Large%20Random%20Hermitian%20Jacobi%20Matrices%20With%20Applications%20to%20Wireless%20Communications&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Levy,%20N.&rft.date=2009-04-01&rft.volume=55&rft.issue=4&rft.spage=1534&rft.epage=1554&rft.pages=1534-1554&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2013046&rft_dat=%3Cproquest_RIE%3E1666109391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195935898&rft_id=info:pmid/&rft_ieee_id=4802316&rfr_iscdi=true