On Certain Large Random Hermitian Jacobi Matrices With Applications to Wireless Communications

In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular, we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-04, Vol.55 (4), p.1534-1554
Hauptverfasser: Levy, N., Somekh, O., Shamai, S., Zeitouni, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular, we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed-form expression for the per-cell sum-rate of this channel in high signal-to-noise ratio (SNR), when an intra-cell time-division multiple-access (TDMA) protocol is employed. Since the matrices of interest are tridiagonal , their eigenvectors can be considered as sequences with second-order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two-by-two matrices. For the case where K users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2013046