Laboratory evaluation of an airborne ozone instrument that compensates for altitude/sensitivity effects
One problem encountered in the use of air-quality instrumentation on aircraft is the variation of instrument sensitivity with pressure as the result of altitude changes of the aircraft. Many instruments experience sensitivity changes of as much as a factor of 2 at altitudes of 6 km. Discussed are re...
Gespeichert in:
Veröffentlicht in: | Environ. Sci. Technol.; (United States) 1983-02, Vol.17 (2), p.100-103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One problem encountered in the use of air-quality instrumentation on aircraft is the variation of instrument sensitivity with pressure as the result of altitude changes of the aircraft. Many instruments experience sensitivity changes of as much as a factor of 2 at altitudes of 6 km. Discussed are recent modifications to a chemiluminescent (ethylene) ozone detector that allow the instrument to automatically compensate for pressure/sensitivity effects. The modification provides automated mass flow rate control for both the sample and ethylene gas flows. The flow control systems maintain flow rate to within 15 percent for a 100-torr instantaneous pressure change, and flow rates are returned to the desired set points within 10 s after the pressure change. During simulated altitude changes (300 m/min from mean sea level to 3-km altitude), flow rates were controlled to within 3 percent of the set point. Laboratory data are summarized verifying the operation of the instrument for a pressure range of 760 torr (sea level) to 350 torr (approximately 20,000 ft) and an ozone concentration range from 20 to approximately 700 ppb. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es00108a007 |