A remark on global bifurcations of solutions of Ginzburg–Landau equation

We have proved that all the closed connected sets of solutions of the complex Ginzburg–Landau equation { − Δ u ( x ) + 2 i 〈 A ( x ) , ∇ u ( x ) 〉 + ‖ A ( x ) ‖ 2 u ( x ) = λ ( 1 − | u ( x ) | 2 ) u ( x ) in  Ω , u = 0 on  ∂ Ω , bifurcating from the set of normal solutions { 0 } × ( 0 , + ∞ ) ⊂ H 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2011-12, Vol.12 (6), p.2943-2946
Hauptverfasser: Hirano, Norimichi, Rybicki, Sławomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have proved that all the closed connected sets of solutions of the complex Ginzburg–Landau equation { − Δ u ( x ) + 2 i 〈 A ( x ) , ∇ u ( x ) 〉 + ‖ A ( x ) ‖ 2 u ( x ) = λ ( 1 − | u ( x ) | 2 ) u ( x ) in  Ω , u = 0 on  ∂ Ω , bifurcating from the set of normal solutions { 0 } × ( 0 , + ∞ ) ⊂ H 0 1 ( Ω , C ) × ( 0 , + ∞ ) are unbounded, where Ω ⊂ R 2 is an open, bounded domain with smooth boundary, A ( x 1 , x 2 ) = ( − x 2 , x 1 ) and ‖ ⋅ ‖ is the usual norm in R 2 .
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2011.04.006