Suppressing acoustic echo in a spectral envelope space

Full-duplex hands-free telecommunication systems employ an acoustic echo canceler (AEC) to remove the undesired echoes that result from the coupling between a loudspeaker and a microphone. Traditionally, the removal is achieved by modeling the echo path impulse response with an adaptive finite impul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on speech and audio processing 2005-09, Vol.13 (5), p.1048-1062
Hauptverfasser: Faller, C., Jingdong Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Full-duplex hands-free telecommunication systems employ an acoustic echo canceler (AEC) to remove the undesired echoes that result from the coupling between a loudspeaker and a microphone. Traditionally, the removal is achieved by modeling the echo path impulse response with an adaptive finite impulse response (FIR) filter and subtracting an echo estimate from the microphone signal. It is not uncommon that an adaptive filter with a length of 50-300 ms needs to be considered, which makes an AEC highly computationally expensive. In this paper, we propose an echo suppression algorithm to eliminate the echo effect. Instead of identifying the echo path impulse response, the proposed method estimates the spectral envelope of the echo signal. The suppression is done by spectral modification-a technique originally proposed for noise reduction. It is shown that this new approach has several advantages over the traditional AEC. Properties of human auditory perception are considered, by estimating spectral envelopes according to the frequency selectivity of the auditory system, resulting in improved perceptual quality. A conventional AEC is often combined with a post-processor to reduce the residual echoes due to minor echo path changes. It is shown that the proposed algorithm is insensitive to such changes. Therefore, no post-processor is necessary. Furthermore, the new scheme is computationally much more efficient than a conventional AEC.
ISSN:1063-6676
2329-9290
1558-2353
2329-9304
DOI:10.1109/TSA.2005.852012