Assessment of techniques for characterizing the surface quality of ground silicon nitride
This study evaluates techniques used to detect and quantify the extent of surface and subsurface damage in ground silicon nitride. Specimens of two differently ground surfaces of a hot isostatically pressed (HIP) silicon nitride, commercially designated as GS-44, were subjected to six types of analy...
Gespeichert in:
Veröffentlicht in: | Journal of Materials Engineering and Performance 1998-08, Vol.7 (4), p.533-547 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study evaluates techniques used to detect and quantify the extent of surface and subsurface damage in ground silicon nitride. Specimens of two differently ground surfaces of a hot isostatically pressed (HIP) silicon nitride, commercially designated as GS-44, were subjected to six types of analyses, namely mechanical stylus profiling, atomic force microscopy, point-counting analysis of fragmentation pits, laser-light scattering, optical gating, and grazing incidence x-ray diffraction (GIXD). The results of these investigations are compared and discussed. The techniques providing the clearest correlations with grinding conditions were mechanical stylus roughness, fragmentation analysis, and GIXD (residual stress conditions). Those that exhibited some correlation but appear to require more work to develop a reliable evaluation method were laser scattering and optical gating. Atomic force microscopy was useful, but not as a routine investigative tool for quality control in ceramic machining. The techniques that appear to have the most near-term potential for routine use are fragmentation analysis and optical gating. Laser-based optical scattering exhibits potential for routine application, but, more development is needed for its commercialization. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1361/105994998770347693 |