Distributed logic processors trained under constraints using stochastic approximation techniques

The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 1999-07, Vol.29 (4), p.421-426
Hauptverfasser: Najim, K., Ikonen, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 4
container_start_page 421
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 29
creator Najim, K.
Ikonen, E.
description The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of several logic processors, each of which performs a logical fuzzy mapping. A simulation example, using data collected from an industrial fluidized bed combustor, illustrates the feasibility and the performance of this training algorithm.
doi_str_mv 10.1109/3468.769763
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919928902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>769763</ieee_id><sourcerecordid>28222939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6325641b6c8a0d83d1c5b41fd8dd2df1faff62d27e7e7335a30e30000d5f96ff3</originalsourceid><addsrcrecordid>eNqN0TtPwzAQAOAIgUQpTGxMmWBAKX7FiUdUnlIlFpiD60drlMbF50jw73FIxQjYgy3fd7Z1l2WnGM0wRuKKMl7PKi4qTveyCS7LuiCM8P20RzUtGCPVYXYE8IYQZkywSfZ64yAGt-yj0XnrV07l2-CVAfAB8hik61Kg77QJufIdfJ9EyHtw3SqH6NVaQkxZcpvyPtxGRue7PBq17tx7b-A4O7CyBXOyW6fZy93t8_yhWDzdP86vF4WiVRkLTknJGV5yVUuka6qxKpcMW11rTbTFVlrLiSaVSZPSUlJkKEpDl1Zwa-k0uxjvTd8Y3o3NxoEybSs743toBBaC1AKRJM9_lYOqUnH-AQkhgoq_IReEYFImeDlCFTxAMLbZhlSy8Nlg1AwdbIYONmMHkz4btTPG_Mhd8AsJwJha</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26922125</pqid></control><display><type>article</type><title>Distributed logic processors trained under constraints using stochastic approximation techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Najim, K. ; Ikonen, E.</creator><creatorcontrib>Najim, K. ; Ikonen, E.</creatorcontrib><description>The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of several logic processors, each of which performs a logical fuzzy mapping. A simulation example, using data collected from an industrial fluidized bed combustor, illustrates the feasibility and the performance of this training algorithm.</description><identifier>ISSN: 1083-4427</identifier><identifier>EISSN: 1558-2426</identifier><identifier>DOI: 10.1109/3468.769763</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer simulation ; Constraint optimization ; Fuzzy ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy set theory ; Humans ; Industrial training ; Laboratories ; Logic ; Mathematical analysis ; Parameter estimation ; Process control ; Processors ; Shape control ; Stochastic processes ; Stochasticity</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 1999-07, Vol.29 (4), p.421-426</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6325641b6c8a0d83d1c5b41fd8dd2df1faff62d27e7e7335a30e30000d5f96ff3</citedby><cites>FETCH-LOGICAL-c375t-6325641b6c8a0d83d1c5b41fd8dd2df1faff62d27e7e7335a30e30000d5f96ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/769763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/769763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Najim, K.</creatorcontrib><creatorcontrib>Ikonen, E.</creatorcontrib><title>Distributed logic processors trained under constraints using stochastic approximation techniques</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of several logic processors, each of which performs a logical fuzzy mapping. A simulation example, using data collected from an industrial fluidized bed combustor, illustrates the feasibility and the performance of this training algorithm.</description><subject>Computer simulation</subject><subject>Constraint optimization</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy set theory</subject><subject>Humans</subject><subject>Industrial training</subject><subject>Laboratories</subject><subject>Logic</subject><subject>Mathematical analysis</subject><subject>Parameter estimation</subject><subject>Process control</subject><subject>Processors</subject><subject>Shape control</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><issn>1083-4427</issn><issn>1558-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0TtPwzAQAOAIgUQpTGxMmWBAKX7FiUdUnlIlFpiD60drlMbF50jw73FIxQjYgy3fd7Z1l2WnGM0wRuKKMl7PKi4qTveyCS7LuiCM8P20RzUtGCPVYXYE8IYQZkywSfZ64yAGt-yj0XnrV07l2-CVAfAB8hik61Kg77QJufIdfJ9EyHtw3SqH6NVaQkxZcpvyPtxGRue7PBq17tx7b-A4O7CyBXOyW6fZy93t8_yhWDzdP86vF4WiVRkLTknJGV5yVUuka6qxKpcMW11rTbTFVlrLiSaVSZPSUlJkKEpDl1Zwa-k0uxjvTd8Y3o3NxoEybSs743toBBaC1AKRJM9_lYOqUnH-AQkhgoq_IReEYFImeDlCFTxAMLbZhlSy8Nlg1AwdbIYONmMHkz4btTPG_Mhd8AsJwJha</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Najim, K.</creator><creator>Ikonen, E.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>19990701</creationdate><title>Distributed logic processors trained under constraints using stochastic approximation techniques</title><author>Najim, K. ; Ikonen, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6325641b6c8a0d83d1c5b41fd8dd2df1faff62d27e7e7335a30e30000d5f96ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computer simulation</topic><topic>Constraint optimization</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy set theory</topic><topic>Humans</topic><topic>Industrial training</topic><topic>Laboratories</topic><topic>Logic</topic><topic>Mathematical analysis</topic><topic>Parameter estimation</topic><topic>Process control</topic><topic>Processors</topic><topic>Shape control</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Najim, K.</creatorcontrib><creatorcontrib>Ikonen, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Najim, K.</au><au>Ikonen, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed logic processors trained under constraints using stochastic approximation techniques</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>1999-07-01</date><risdate>1999</risdate><volume>29</volume><issue>4</issue><spage>421</spage><epage>426</epage><pages>421-426</pages><issn>1083-4427</issn><eissn>1558-2426</eissn><coden>ITSHFX</coden><abstract>The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of several logic processors, each of which performs a logical fuzzy mapping. A simulation example, using data collected from an industrial fluidized bed combustor, illustrates the feasibility and the performance of this training algorithm.</abstract><pub>IEEE</pub><doi>10.1109/3468.769763</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 1999-07, Vol.29 (4), p.421-426
issn 1083-4427
1558-2426
language eng
recordid cdi_proquest_miscellaneous_919928902
source IEEE Electronic Library (IEL)
subjects Computer simulation
Constraint optimization
Fuzzy
Fuzzy logic
Fuzzy neural networks
Fuzzy set theory
Humans
Industrial training
Laboratories
Logic
Mathematical analysis
Parameter estimation
Process control
Processors
Shape control
Stochastic processes
Stochasticity
title Distributed logic processors trained under constraints using stochastic approximation techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20logic%20processors%20trained%20under%20constraints%20using%20stochastic%20approximation%20techniques&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Najim,%20K.&rft.date=1999-07-01&rft.volume=29&rft.issue=4&rft.spage=421&rft.epage=426&rft.pages=421-426&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/3468.769763&rft_dat=%3Cproquest_RIE%3E28222939%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26922125&rft_id=info:pmid/&rft_ieee_id=769763&rfr_iscdi=true