Distributed logic processors trained under constraints using stochastic approximation techniques

The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 1999-07, Vol.29 (4), p.421-426
Hauptverfasser: Najim, K., Ikonen, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of several logic processors, each of which performs a logical fuzzy mapping. A simulation example, using data collected from an industrial fluidized bed combustor, illustrates the feasibility and the performance of this training algorithm.
ISSN:1083-4427
1558-2426
DOI:10.1109/3468.769763