Distributed logic processors trained under constraints using stochastic approximation techniques
The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of se...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 1999-07, Vol.29 (4), p.421-426 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLPs are fuzzy neural networks capable of representing nonlinear functions. They consist of several logic processors, each of which performs a logical fuzzy mapping. A simulation example, using data collected from an industrial fluidized bed combustor, illustrates the feasibility and the performance of this training algorithm. |
---|---|
ISSN: | 1083-4427 1558-2426 |
DOI: | 10.1109/3468.769763 |