Surface functionalization of multiwalled carbon nanotubes with poly(3,4-propylenedioxythiophene) and preparation of its random copolymers: new hybrid materials
Multiwalled carbon nanotubes (MWNTs) were functionalized with poly(3,4-propylenedioxythiophene) (PProDOT) using a simple “chemical grafting” approach. After the conventional acid oxidation (AO) process, the MWNT-COOH was converted to the acyl chloride functionalized MWNTs (MWNT-COCl) by treating the...
Gespeichert in:
Veröffentlicht in: | Colloid and polymer science 2009, Vol.287 (1), p.97-102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiwalled carbon nanotubes (MWNTs) were functionalized with poly(3,4-propylenedioxythiophene) (PProDOT) using a simple “chemical grafting” approach. After the conventional acid oxidation (AO) process, the MWNT-COOH was converted to the acyl chloride functionalized MWNTs (MWNT-COCl) by treating them with thionyl chloride. The MWNT-COCl were further reacted with a functionalized monomer based on 3,4-propylenedioxythiophene (ProDOT-OH), followed by oxidative polymerization to prepare the MWNT-g-PProDOT hybrid. The monomer-functionalized MWNTs was further copolymerized with thiophene to prepare conducting copolymers on carbon nanotubes (CNTs). Fourier-transformed infrared spectrophotometry was employed to characterize the change in surface functionalities, which revealed that the PProDOT was covalently grafted to the MWNTs, while TGA was used to study the weight gain due to the functionalization. UV-Vis absorption spectra revealed the functionalization of the conjugated polymer by showing the typical absorption band. The morphology micrographs of the grafted PProDOT on MWNTs as evidenced by field emission scanning electron microscopy and transmission electron microscopy showed apparent effect on the structure and appearance of the MWNTs by growing thicker as expected from surface modification. Using the facile route developed in this study, CNTs can be easily fabricated with other types of polymers for several applications. |
---|---|
ISSN: | 0303-402X 1435-1536 |
DOI: | 10.1007/s00396-008-1945-4 |