Impact of photodepletion to amplified spontaneous emission of proton-transfer dyes in polymeric matrices
A six level rate equation system was used to investigate the impact of photodepletion to amplified spontaneous emission (ASE) of intramolecular proton-transfer (IPT) dyes incorporated into polymeric hosts. The model includes the most important transitions for the normal and tautomer form of the mole...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2007-05, Vol.87 (3), p.475-481 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A six level rate equation system was used to investigate the impact of photodepletion to amplified spontaneous emission (ASE) of intramolecular proton-transfer (IPT) dyes incorporated into polymeric hosts. The model includes the most important transitions for the normal and tautomer form of the molecule as well as intersystem crossing and triplet--triplet transitions. The experimentally observed pulse shape as well as photodepletion phenomena, i.e. a first order exponential decay of the ASE intensity and a shortening in ASE pulse width, have been simulated successfully. Additionally, the model was used to propose an explanation of the unexpected high photodepletion of proton-transfer dyes in solids. The results show that the emission cross section and reabsorption cross section of the tautomer form of the molecule are the most important parameter not only for efficiency but also for photodepletion. The model was tested by comparison with experimental results of 2-(2'-hydroxyphenyl)benzimidazole in polymethylmethacrylate (PMMA), polystyrene (PS) and a 1:1 alternating copolymer matrix PS-co-PMMA. |
---|---|
ISSN: | 0946-2171 1432-0649 |
DOI: | 10.1007/s00340-007-2631-9 |