Higher order log-concavity in Euler’s difference table

For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2011-10, Vol.311 (20), p.2128-2134
Hauptverfasser: Chen, William Y.C., Gu, Cindy C.Y., Ma, Kevin J., Wang, Larry X.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2134
container_issue 20
container_start_page 2128
container_title Discrete mathematics
container_volume 311
creator Chen, William Y.C.
Gu, Cindy C.Y.
Ma, Kevin J.
Wang, Larry X.W.
description For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-points-permutations of [n]. We show that for any n≥1, the sequence {dnk}0≤k≤n is essentially 2-log-concave and reverse ultra log-concave. ► In this paper, we study the higher order log-concavity of {dnk}0≤k≤n, where dnk=enk/n! and enk are the entries in Euler’s difference table. ► We show that the sequence {dnk}0≤k≤n is essentially 2-log-concave for any n≥1. ► We also show that the sequence {dnk}0≤k≤n is reverse ultra log-concave for any n≥1.
doi_str_mv 10.1016/j.disc.2011.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919921373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X11002639</els_id><sourcerecordid>919921373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-65254bc51b880d5237fe9d49d84a401dc1b2339a3fe252e7d57c7a0e7f69e6393</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4Go24mrG_EySCbiRUq1QcKPQXcgkd2rKdKYm00J3voav55OYUnHp5l4unHMu50PomuCCYCLuVoXz0RYUE1JgUWAsTtCIVJLmoiKLUzTCmNCcCb44RxcxrnC6BatGqJr55TuErA8uzbZf5rbvrNn5YZ_5LptuWwjfn18xc75pIEBnIRtM3cIlOmtMG-Hqd4_R2-P0dTLL5y9Pz5OHeW4Zl0MuOOVlbTmpqwo7TplsQLlSuao0JSbOkpoypgxrgHIK0nFppcEgG6FAMMXG6PaYuwn9xxbioNepKbSt6aDfRq2IUpQwyZKSHpU29DEGaPQm-LUJe02wPlDSK32gpA-UNBY6UUqmm994E61pm2A66-Ofk5alkoLKpLs_6iB13XkIOlp_oOF8ADto1_v_3vwAdnx9Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919921373</pqid></control><display><type>article</type><title>Higher order log-concavity in Euler’s difference table</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, William Y.C. ; Gu, Cindy C.Y. ; Ma, Kevin J. ; Wang, Larry X.W.</creator><creatorcontrib>Chen, William Y.C. ; Gu, Cindy C.Y. ; Ma, Kevin J. ; Wang, Larry X.W.</creatorcontrib><description>For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-points-permutations of [n]. We show that for any n≥1, the sequence {dnk}0≤k≤n is essentially 2-log-concave and reverse ultra log-concave. ► In this paper, we study the higher order log-concavity of {dnk}0≤k≤n, where dnk=enk/n! and enk are the entries in Euler’s difference table. ► We show that the sequence {dnk}0≤k≤n is essentially 2-log-concave for any n≥1. ► We also show that the sequence {dnk}0≤k≤n is reverse ultra log-concave for any n≥1.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2011.06.006</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>2-log-concavity ; Algebra ; Combinatorial analysis ; Combinatorics ; Combinatorics. Ordered structures ; Euler’s difference table ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Log-concavity ; Mathematical analysis ; Mathematics ; Permutations ; Reverse ultra log-concavity ; Sciences and techniques of general use ; Tables (data) ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Discrete mathematics, 2011-10, Vol.311 (20), p.2128-2134</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-65254bc51b880d5237fe9d49d84a401dc1b2339a3fe252e7d57c7a0e7f69e6393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2011.06.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24497627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, William Y.C.</creatorcontrib><creatorcontrib>Gu, Cindy C.Y.</creatorcontrib><creatorcontrib>Ma, Kevin J.</creatorcontrib><creatorcontrib>Wang, Larry X.W.</creatorcontrib><title>Higher order log-concavity in Euler’s difference table</title><title>Discrete mathematics</title><description>For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-points-permutations of [n]. We show that for any n≥1, the sequence {dnk}0≤k≤n is essentially 2-log-concave and reverse ultra log-concave. ► In this paper, we study the higher order log-concavity of {dnk}0≤k≤n, where dnk=enk/n! and enk are the entries in Euler’s difference table. ► We show that the sequence {dnk}0≤k≤n is essentially 2-log-concave for any n≥1. ► We also show that the sequence {dnk}0≤k≤n is reverse ultra log-concave for any n≥1.</description><subject>2-log-concavity</subject><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Euler’s difference table</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Log-concavity</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Permutations</subject><subject>Reverse ultra log-concavity</subject><subject>Sciences and techniques of general use</subject><subject>Tables (data)</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4Go24mrG_EySCbiRUq1QcKPQXcgkd2rKdKYm00J3voav55OYUnHp5l4unHMu50PomuCCYCLuVoXz0RYUE1JgUWAsTtCIVJLmoiKLUzTCmNCcCb44RxcxrnC6BatGqJr55TuErA8uzbZf5rbvrNn5YZ_5LptuWwjfn18xc75pIEBnIRtM3cIlOmtMG-Hqd4_R2-P0dTLL5y9Pz5OHeW4Zl0MuOOVlbTmpqwo7TplsQLlSuao0JSbOkpoypgxrgHIK0nFppcEgG6FAMMXG6PaYuwn9xxbioNepKbSt6aDfRq2IUpQwyZKSHpU29DEGaPQm-LUJe02wPlDSK32gpA-UNBY6UUqmm994E61pm2A66-Ofk5alkoLKpLs_6iB13XkIOlp_oOF8ADto1_v_3vwAdnx9Qw</recordid><startdate>20111028</startdate><enddate>20111028</enddate><creator>Chen, William Y.C.</creator><creator>Gu, Cindy C.Y.</creator><creator>Ma, Kevin J.</creator><creator>Wang, Larry X.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111028</creationdate><title>Higher order log-concavity in Euler’s difference table</title><author>Chen, William Y.C. ; Gu, Cindy C.Y. ; Ma, Kevin J. ; Wang, Larry X.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-65254bc51b880d5237fe9d49d84a401dc1b2339a3fe252e7d57c7a0e7f69e6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2-log-concavity</topic><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Euler’s difference table</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Log-concavity</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Permutations</topic><topic>Reverse ultra log-concavity</topic><topic>Sciences and techniques of general use</topic><topic>Tables (data)</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, William Y.C.</creatorcontrib><creatorcontrib>Gu, Cindy C.Y.</creatorcontrib><creatorcontrib>Ma, Kevin J.</creatorcontrib><creatorcontrib>Wang, Larry X.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, William Y.C.</au><au>Gu, Cindy C.Y.</au><au>Ma, Kevin J.</au><au>Wang, Larry X.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher order log-concavity in Euler’s difference table</atitle><jtitle>Discrete mathematics</jtitle><date>2011-10-28</date><risdate>2011</risdate><volume>311</volume><issue>20</issue><spage>2128</spage><epage>2134</epage><pages>2128-2134</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-points-permutations of [n]. We show that for any n≥1, the sequence {dnk}0≤k≤n is essentially 2-log-concave and reverse ultra log-concave. ► In this paper, we study the higher order log-concavity of {dnk}0≤k≤n, where dnk=enk/n! and enk are the entries in Euler’s difference table. ► We show that the sequence {dnk}0≤k≤n is essentially 2-log-concave for any n≥1. ► We also show that the sequence {dnk}0≤k≤n is reverse ultra log-concave for any n≥1.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2011.06.006</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2011-10, Vol.311 (20), p.2128-2134
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_919921373
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects 2-log-concavity
Algebra
Combinatorial analysis
Combinatorics
Combinatorics. Ordered structures
Euler’s difference table
Exact sciences and technology
Global analysis, analysis on manifolds
Log-concavity
Mathematical analysis
Mathematics
Permutations
Reverse ultra log-concavity
Sciences and techniques of general use
Tables (data)
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Higher order log-concavity in Euler’s difference table
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20order%20log-concavity%20in%20Euler%E2%80%99s%20difference%20table&rft.jtitle=Discrete%20mathematics&rft.au=Chen,%20William%20Y.C.&rft.date=2011-10-28&rft.volume=311&rft.issue=20&rft.spage=2128&rft.epage=2134&rft.pages=2128-2134&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2011.06.006&rft_dat=%3Cproquest_cross%3E919921373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919921373&rft_id=info:pmid/&rft_els_id=S0012365X11002639&rfr_iscdi=true