Higher order log-concavity in Euler’s difference table
For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-poi...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2011-10, Vol.311 (20), p.2128-2134 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-points-permutations of [n]. We show that for any n≥1, the sequence {dnk}0≤k≤n is essentially 2-log-concave and reverse ultra log-concave.
► In this paper, we study the higher order log-concavity of {dnk}0≤k≤n, where dnk=enk/n! and enk are the entries in Euler’s difference table. ► We show that the sequence {dnk}0≤k≤n is essentially 2-log-concave for any n≥1. ► We also show that the sequence {dnk}0≤k≤n is reverse ultra log-concave for any n≥1. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2011.06.006 |