Anelastic deformation measurements in structural engineering alloys
Nonelastic strains in the form of room-temperature primary creep and anelasticity occur at 70 percent of the yield strength for 4340 steel, 15-5 PH, 304 stainless steel, Ti6Al4V, and NILO 365. The amount of creep (the irrecoverable strain) diminishes with loading cycle due to work hardening. The ane...
Gespeichert in:
Veröffentlicht in: | Journal of materials engineering and performance 2000-08, Vol.9 (4), p.463-466 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 4 |
container_start_page | 463 |
container_title | Journal of materials engineering and performance |
container_volume | 9 |
creator | COTTON, J. D |
description | Nonelastic strains in the form of room-temperature primary creep and anelasticity occur at 70 percent of the yield strength for 4340 steel, 15-5 PH, 304 stainless steel, Ti6Al4V, and NILO 365. The amount of creep (the irrecoverable strain) diminishes with loading cycle due to work hardening. The anelastic strains are relatively constant for each loading cycle, about 25 micro-epsilon for ferrous alloys and 4 micro-epsilon for Ti6Al4V. The anelastic beahvior for NILO 365 was anomalous, presumably due to magnetostriction effects. (CSA) |
doi_str_mv | 10.1361/105994900770345872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919920051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>59315845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-6e69ed877acf45dafbe272cf6f994e608e432ad35d98a95504ddf019e71563f93</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqH_C0KOhpNd_ZHEvxCwpe9LzE7KSkZLM12T3035tS8aDgaebwvMPMIHRJ8B1hktwTLLTmGmOlMOOiUfQIzYjgvCaY8uPSF1AXIU7RWc4bXCSlfIaWiwjB5NHbqgM3pN6MfohVDyZPCXqIY658rPKYJjtOyYQK4tpHgOTjujIhDLt8jk6cCRkuvuscvT8-vC2f69Xr08tysaotp3qsJUgNXaOUsY6LzrgPoIpaJ11ZHSRugDNqOiY63RgtBOZd5zDRoIiQzGk2R7eHuds0fE6Qx7b32UIIJsIw5VYTrSnGghR586-kSmKCJSvw6hfcDFOK5YqWUsokVXqP6AHZNOScwLXb5HuTdi3B7f797d_3l9D192STrQkumWh9_kk2qlGSsC_bMYPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222362793</pqid></control><display><type>article</type><title>Anelastic deformation measurements in structural engineering alloys</title><source>SpringerLink Journals</source><creator>COTTON, J. D</creator><creatorcontrib>COTTON, J. D</creatorcontrib><description>Nonelastic strains in the form of room-temperature primary creep and anelasticity occur at 70 percent of the yield strength for 4340 steel, 15-5 PH, 304 stainless steel, Ti6Al4V, and NILO 365. The amount of creep (the irrecoverable strain) diminishes with loading cycle due to work hardening. The anelastic strains are relatively constant for each loading cycle, about 25 micro-epsilon for ferrous alloys and 4 micro-epsilon for Ti6Al4V. The anelastic beahvior for NILO 365 was anomalous, presumably due to magnetostriction effects. (CSA)</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1361/105994900770345872</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Anelasticity ; Anelasticity, internal friction, stress relaxation, and mechanical resonances ; Applied sciences ; Austenitic stainless steels ; Condensed matter: structure, mechanical and thermal properties ; Creep (materials) ; Exact sciences and technology ; High strength steels ; Magnetostriction ; Materials engineering ; Mechanical and acoustical properties of condensed matter ; Metals. Metallurgy ; Nickel chromium molybdenum steels ; Physics ; Strain ; Structural steels ; Titanium base alloys ; Yield strength</subject><ispartof>Journal of materials engineering and performance, 2000-08, Vol.9 (4), p.463-466</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright ASM International Aug 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-6e69ed877acf45dafbe272cf6f994e608e432ad35d98a95504ddf019e71563f93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=878761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COTTON, J. D</creatorcontrib><title>Anelastic deformation measurements in structural engineering alloys</title><title>Journal of materials engineering and performance</title><description>Nonelastic strains in the form of room-temperature primary creep and anelasticity occur at 70 percent of the yield strength for 4340 steel, 15-5 PH, 304 stainless steel, Ti6Al4V, and NILO 365. The amount of creep (the irrecoverable strain) diminishes with loading cycle due to work hardening. The anelastic strains are relatively constant for each loading cycle, about 25 micro-epsilon for ferrous alloys and 4 micro-epsilon for Ti6Al4V. The anelastic beahvior for NILO 365 was anomalous, presumably due to magnetostriction effects. (CSA)</description><subject>Anelasticity</subject><subject>Anelasticity, internal friction, stress relaxation, and mechanical resonances</subject><subject>Applied sciences</subject><subject>Austenitic stainless steels</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Creep (materials)</subject><subject>Exact sciences and technology</subject><subject>High strength steels</subject><subject>Magnetostriction</subject><subject>Materials engineering</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Metals. Metallurgy</subject><subject>Nickel chromium molybdenum steels</subject><subject>Physics</subject><subject>Strain</subject><subject>Structural steels</subject><subject>Titanium base alloys</subject><subject>Yield strength</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90E1LAzEQBuAgCtbqH_C0KOhpNd_ZHEvxCwpe9LzE7KSkZLM12T3035tS8aDgaebwvMPMIHRJ8B1hktwTLLTmGmOlMOOiUfQIzYjgvCaY8uPSF1AXIU7RWc4bXCSlfIaWiwjB5NHbqgM3pN6MfohVDyZPCXqIY658rPKYJjtOyYQK4tpHgOTjujIhDLt8jk6cCRkuvuscvT8-vC2f69Xr08tysaotp3qsJUgNXaOUsY6LzrgPoIpaJ11ZHSRugDNqOiY63RgtBOZd5zDRoIiQzGk2R7eHuds0fE6Qx7b32UIIJsIw5VYTrSnGghR586-kSmKCJSvw6hfcDFOK5YqWUsokVXqP6AHZNOScwLXb5HuTdi3B7f797d_3l9D192STrQkumWh9_kk2qlGSsC_bMYPg</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>COTTON, J. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7SR</scope></search><sort><creationdate>20000801</creationdate><title>Anelastic deformation measurements in structural engineering alloys</title><author>COTTON, J. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-6e69ed877acf45dafbe272cf6f994e608e432ad35d98a95504ddf019e71563f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Anelasticity</topic><topic>Anelasticity, internal friction, stress relaxation, and mechanical resonances</topic><topic>Applied sciences</topic><topic>Austenitic stainless steels</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Creep (materials)</topic><topic>Exact sciences and technology</topic><topic>High strength steels</topic><topic>Magnetostriction</topic><topic>Materials engineering</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Metals. Metallurgy</topic><topic>Nickel chromium molybdenum steels</topic><topic>Physics</topic><topic>Strain</topic><topic>Structural steels</topic><topic>Titanium base alloys</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COTTON, J. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COTTON, J. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anelastic deformation measurements in structural engineering alloys</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>9</volume><issue>4</issue><spage>463</spage><epage>466</epage><pages>463-466</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>Nonelastic strains in the form of room-temperature primary creep and anelasticity occur at 70 percent of the yield strength for 4340 steel, 15-5 PH, 304 stainless steel, Ti6Al4V, and NILO 365. The amount of creep (the irrecoverable strain) diminishes with loading cycle due to work hardening. The anelastic strains are relatively constant for each loading cycle, about 25 micro-epsilon for ferrous alloys and 4 micro-epsilon for Ti6Al4V. The anelastic beahvior for NILO 365 was anomalous, presumably due to magnetostriction effects. (CSA)</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1361/105994900770345872</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9495 |
ispartof | Journal of materials engineering and performance, 2000-08, Vol.9 (4), p.463-466 |
issn | 1059-9495 1544-1024 |
language | eng |
recordid | cdi_proquest_miscellaneous_919920051 |
source | SpringerLink Journals |
subjects | Anelasticity Anelasticity, internal friction, stress relaxation, and mechanical resonances Applied sciences Austenitic stainless steels Condensed matter: structure, mechanical and thermal properties Creep (materials) Exact sciences and technology High strength steels Magnetostriction Materials engineering Mechanical and acoustical properties of condensed matter Metals. Metallurgy Nickel chromium molybdenum steels Physics Strain Structural steels Titanium base alloys Yield strength |
title | Anelastic deformation measurements in structural engineering alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anelastic%20deformation%20measurements%20in%20structural%20engineering%20alloys&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=COTTON,%20J.%20D&rft.date=2000-08-01&rft.volume=9&rft.issue=4&rft.spage=463&rft.epage=466&rft.pages=463-466&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1361/105994900770345872&rft_dat=%3Cproquest_cross%3E59315845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222362793&rft_id=info:pmid/&rfr_iscdi=true |